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Abstract 

Music mood describes the inherent emotional 
meaning of a music clip.  It is helpful in music 
understanding, music search and some music-related 
applications.  In this paper, a hierarchical framework 
is presented to automate the task of mood detection 
from acoustic music data, by following some music 
psychological theories in western cultures.  Three 
feature sets , intensity, timbre and rhythm, are 
extracted to represent the characteristics of a music 
clip.  Moreover, a mood tracking approach is also 
presented for a whole piece of music.  Experimental 
evaluations indicate that the proposed algorithms 
produce satisfactory results. 

1 Introduction 
As there are more and more music databases in personal 
computer and the Internet at present, people start to realize the 
importance of creating metadata that allow users to access 
musical works easily.  Although traditional information such 
as the name of the artist or the title of the work remains 
important, these tags have limited applicability in many 
music-related queries.  Nowadays, users expect more semantic 
metadata to archive music, such as similarity, style and mood 
(Huron, 2000).  However, compared to the first two, few 
works have focused on mood detection.   

One common opinion objecting to mood detection is that the 
emotional meaning of music is subjective and it depends on 
many factors including culture.  Music psychologists now 
agree that culture is of great importance in people’s mood 
response to music, as well as other factors including education 
and previous experiences.  However, it is also found that, 
within a given cultural context, there is agreement among 
individuals as to the mood elicited by music (Radocy and 
Boyle, 1988).  Krumhansl (Krumhansl, 2002) also pointed out 
that musical sounds might inherently have emotional meaning.  
For example, some music patterns represent contentment or 
relaxing, while some others make an individual feel anxious or 

frantic.  Therefore, it is possible to build a mood detection 
system in a concrete environment, for example, for classical 
music in western culture. 

Few works have touched this field.  Liu (Liu, Zhang and Zhu, 
2003) has presented a mood recognition system, where a fuzzy 
classifier was adopted to classify the mood of Johann 
Strauss’s waltz centos into five clusters.  In this system, tempo, 
loudness, pitch change, note density and timbre were extracted 
from MIDI file and used as the primitives to recognize the 
mood of music.  Katayose (Katayose, Imai and Inokuchi, 1988) 
also presented a sentiment extraction system for pop music, 
where monophonic acoustic data was firstly transcribed into 
music codes.  Then, primitives of music such as melody, 
rhythm, harmony and form were extracted from these music 
codes.   These works have led to some impressive results, but 
they both concentrated on MIDI or symbolic representations, 
due to the difficulty of extracting useful features from acoustic 
data.  However, most music in real world is not in symbolic 
form and there is no existing transcription system that can 
translate it into symbolic representations well (Scheirer, 2000).  
Therefore, it is necessary to deal with the acoustic data 
directly.   

In this paper, we present a mood detection algorithm for 
classical music from acoustic data. 

1.1 Mood Taxonomy 

One issue of mood detection is on mood taxonomy .  In music 
psychology, the traditional approach to describing mood 
response is using adjective descriptors, such as pathetic, 
hopeful and gloomy .  However, these adjectives varied quite 
freely in different researches (Liu, Zhang and Zhu, 2003; 
Katayose, Imai and Inokuchi, 1988).  There is not a standard 
mood taxonomy  system accepted by all currently .  Hevner’s 
adjective checklist (Hevner, 1935) presented in 1930s has 
served as the basis for some subsequent research on mood 
response to music.  This checklist is composed of 67 
adjectives from eight clusters , which include Sober, Gloomy, 
Longing, Lyrical, Sprightly, Joyous, Restless and Robust.  
However, since adjectives in the same cluster are actually of 
approximately the same meaning, it is very difficult to 
discriminate one from others.  This ambiguity makes it Permission to make digital or hard copies of all or part of this work for 
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difficult to obtain the “ground truth”.  Meanwhile, it doesn’t 
indicate any underlying stimulus that influences these 
responses, which will be of great importance for 
computational modeling.  In the late 1990s, Thayer (Thayer, 
1989) proposed a two-dimensional mood model.  Unlike 
Hevner’s checklist that uses individual adjectives which 
collectively form a mood pattern, this dimensional approach 
adopts the theory that mood is entailed from two factors: 
Stress (happy/anxious) and Energy (calm/ energetic), and 
divides music mood into four clusters: Contentment, 
Depression, Exuberance and Anxious/Frantic as shown in Fig. 
1.  

 

 In Fig. 1, Contentment refers to happy and calm music, such 
as Bach’s “Jesus, Joy of Man’s Desiring”; Depression refers to 
calm and anxious music, such as the opening of Stravinsky’s 
“Firebird”; Exuberance refers to happy and energetic music 
such as Rossini’s “William Tell Overture”; and 
Anxious/Frantic refers to anxious and energetic music, such as 
Berg’s “Lulu”.  Such definitions of the four clusters are 
explicit and discriminatable, and the two-dimensional 
structure also gives importance cues for computational 
modeling.  Therefore, it is applied in our mood detection 
system.  

1.2 Hierarchical Framework 
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Figure 2: The hieratical mood detection framework 

 

Based on Thayer’s hierarchical model of mood (Thayer, 1989), 
a hierarchical framework is proposed for mood detection, as 
illustrated in Fig. 2.   Huron (Huron, 1992) pointed out that of 
the two factors in Thayer’s model of mood, Energy is more 
computationally tractable and can be estimated using simple 
amplitude-based measures.  In fact, energy for Contentment 
and Depression is usually much less than that of Exuberance 
and Anxious.  Therefore, features representing energy are 
firstly used to classify all these four mood clusters into two 
groups.  If the energy is little, it will be classified into Group 1 
(Contentment and Depression); otherwise, it is classified into 

Group 2 (Exuberance and Anxious).  Then, other features are 
used to determine which exactly the mood type is .  This 
framework is accordant to the music psychological theory.  
Meanwhile, since the performance of different features is not 
the same in discriminating different mood clusters  pairs, this 
framework is advantaged in making it possible to use the most 
suitable features for different tasks.  Moreover, like other 
hierarchical methods, it can make better use of sparse training 
data than its non-hierarchical counterparts  (McCallum, 1998).   

This paper is structured as follows.  Section 2 describes the 
extraction of features.  Detailed mood detection process is 
presented in Section 3.  In Section 4, an automatic  
segmentation approach is presented for mood tracking in a 
whole piece of music.  Section 5 deals with empirical 
experiments and performance evaluations of the proposed 
algorithms and Section 6 with conclusions and future 
directions. 

2 Feature Extraction 

It was indicated that mode, intensity, timbre and rhythm are of 
great significance in arousing different music moods ( Hevner, 
1935; Radocy, and Boyle , 1988; Krumhansl, 2002).  For 
example, major keys are consistently associated with positive 
emotions, whereas minor ones are associated with negative 
emotions.  However, mode is very difficult to obtain from 
acoustic data (Hinn, 1996).  Therefore, only the rest three 
features are extracted and used in our mood detection system.  
Compared to the two dimensions in Thayer’s model of mood, 
intensity is corresponding to “energy”, while both timbre and 
rhythm are corresponding to “stress”.  

Each input music clip is first down-sampled into a uniform 
format: 16000Hz, 16 bits, mono channel, and divided into 
non-overlapping 32ms -long frames.  In each frame, an octave-
scale filter-bank is used to divide the frequency domain into 
several sub-bands: 
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where w0 refers to the sampling rate and n is the number of 
sub-band filters.  In real implementation, 7 sub-bands are used.  
Then, timbre features and intensity features are extracted from 
each frame.   Their means and variances are calculated across 
the music file and thus make up of timbre and intensity 
features sets .  Meanwhile, rhythm features are also extracted 
directly from the music clip.  In order to remove the relativity 
among these raw features, Karhunen-Loeve transform is 
performed on each feature set.  After K-L transform, each of 
the three feature vectors is mapped into an orthogonal space, 
and each covariance matrix also becomes diagonal in the new 
feature space.  This procedure helps to achieve a better 
classification performance with GMM classifier later.  
Detailed feature extractions are as follows. 

2.1 Timbre Features 

Many existing results show that the timbre of sound is 
determined primarily by the spectral information in different 
sub-bands (Zhang and Kuo, 1998).  In this paper, both spectral 
shape features and spectral contrast features are used.  The 
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Figure 1: Thayer’s model of mood 



detail features used are listed in Table 1.  Spectral shape 
features, which include centroid, bandwidth, roll off and 
spectral flux, are widely used to represent the characteristics 
of music signals (Tzanetakis and Cook, 2002).  They are also 
important for mood detection.  For example, centroid for 
music of Exuberance is usually higher everywhere than that 
of Depression, since Exuberance is generally associated with 
a high pitch whereas Depression is with a low pitch. 
Meanwhile,  octave-based spectral contrast features are also 
used to represent relative spectral distributions, due to their 
good properties in music genre recognition (Jiang, Lu, Zhang, 
Tao and Cai, 2002).  

2.2 Intensity Features 

Intensity is approximated by the signal’s root mean-square 
(RMS) level in decibels (Erling, 1996).  It is essential for 
mood detection, because intensity in music of Contentment 
and Depression is usually little, but that of Exuberance and 
Anxious is usually big.  In this system, intensity in each sub-
band and the sum of them are used.    

2.3 Rhythm Features 

Three aspects of rhythm are closely related with people’s 
mood response: strength, regularity and tempo.  For example, 
in the Exuberance cluster, the rhythm is usually strong, steady 
and the tempo is fast; while in Depression, music is usually 
slow and with no distinct rhythm pattern.  Therefore, these 
three features are extracted accordingly.  Since drum or some 
bass instruments are the most important components to 
represent rhythm, and they show their properties mainly in the 
lower sub-bands, in our system, only the lowest sub-band is 
used to extract rhythm features.  

After amplitude envelope is extracted from this  sub-band by 
using a half hamming (raise cosine) window, a Canny 
estimator is used to estimate its difference curve, which is 
used to represent the rhythm information.  The peaks above 
some threshold in such a rhythm curve are detected as bass 
instrumental onsets.  Then, three features are extracted as 
follows:  

 
� Average Strength: the average strength of bass instrumental 

onsets. 
� Average Correlation Peak: the average of the maximum 

three peaks in the auto-correlation curve.  The more regular 
the rhythm is, the higher the value is. 

� Average Tempo: the common divisor of the peaks of the 
auto-correlation curve. 

3 Mood Detection 

Based on the three feature sets extracted in Section 2, the 
mood detection process is performed through a hierarchical 
framework, as illustrated in Fig. 3.  Compared to its non-
hierarchical counterpart as shown in Fig. 4, such hierarchical 
framework can stress on different features for different 
classification tasks, it can also make better use of sparse 
training data (McCallum, 1998).   

In our system, Gaussian Mixture Model (GMM) is utilized to 
model each feature set.  In constructing each GMM, the 
Expectation Maximization (EM) algorithm is used to estimate 
the parameters of the Gaussian component and mixture 
weights.  The initialization is performed using the K-means 
algorithm.   

For a given music clip X, it is firstly classified into Group 1 
(Contentment and Depression) or Group 2 (Exuberance and 
Anxious) based on its intensity information; and then 
classification is performed in each group based on timbre and 
rhythm features, as the Fig. 3 illustrates. 

To classify the music clip into differnet groups, simple 
Bayesian criteria is employed, as 
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where Gi represents different mood group, I represents the 
intensity feature set.  

In each group, the probability of being an exact mood given 
timber and rhythm features can be calculated as  

Feature Name Definition 

Centroid Mean of the short-time Fourier amplitude spectrum. 

Bandwidth Amplitude weighted average of the differences between the spectral 
components and the centroid. 

Roll off 95th percentile of the spectral distribution. 

Spectral  

Shape 
Features 

Spectral Flux 2-Norm distance of the frame-to-frame spectral amplitude difference. 

Sub-band Peak Average value in a small neighborhood around maximum amplitude 
values of spectral components in each sub-band. 

Sub-band Valley Average value in a small neighborhood around minimum amplitude 
values of spectral components in each sub-band. 

Spectral 
Contrast 
Features  

Sub-band 
Average 

Average amplitude of all the spectral components in each sub-
band. 

Table 1: Definition of Timbre Features 
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where Mi is the mood cluster, T and R represent timbre and 
rhythm features respectively; 1λ  and 2λ  are two weighting 
factors to emphasize different features for the mood detection 
in different mood groups. 

Actually, in the Group 1, the tempo of both mood clusters is 
usually slow and the rhythm pattern is generally not steady, 
while the timbre of Contentment is usually much brighter and 
more harmonic than that of Depression.  Therefore, the timbre 
features are more important than the rhythm features in the 
classification in Group 1.  On the contrary, in Group 2, 
rhythm features are more important.  Exuberance usually has 
a more distinguished and steady rhythm than Anxious, while 
their timbre features are similar, since the instruments of both 
mood clusters are mainly brass.  Based on these facts, 1λ   is 

usually set as larger than 0.5, while 2λ   is less than 0.5.  Their 
detailed values are given in the experiments in Section 5.1. 
After each probability is obtained, Bayesian criterion, similar 
to Equation 2, is again employed to classify the music into 
exact mood cluster. 

4 Mood Tracking 
In the previous sections, we present an algorithm on mood 
detection in a given music clip, where the mood type is 
consistent.  However, since the mood is usually changeable in 
a whole piece of classical music (Kamien, 1992), it is not 

appropriate to detect the mood in the range of the whole song.  
In fact, it is necessary to divide the music into several 
independent segments, each of which contains a constant 
mood, and then to detect the mood type in each segment 
respectively.  In this way, mood is tracked in a whole piece of 
music. 

Since changes in intensity and timbre are main cues for new 
sound event and are therefore important for segmentation 
(Tzanetakis  and Cook, 1999), both of the features are used to 
complement each other to improve the performance of 
segmentation in this method. 

According to music theory (Kamien, 1992), one paragraph is 
usually of 16 bars and a very fast tempo is about 1 bar/second 
in classical music.  Therefore, we assume the minimum 
segment length is 16 seconds, and set the basic processing 
unit as 16 seconds window with 1-second temporal resolution. 

To find the segment boundary, divergence shape (Campbell, 
1997) is used to measure the dissimilarity between two 
contiguous windows, supposing both the features are 
Gaussian distributed,  
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where Ci and Cj is the estimated covariance matrix of ith and 
(i+1)th window, respectively. 

Base on the dissimilarity measure, a confidence of being a 
boundary is defined as 
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Figure 3: The hierarchical mood detection framework 
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Figure 4: The non-hierarchical mood detection framework 
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where Iµ  and Iσ  are the mean and variance of intensity 

dissimilarity between two contiguous windows, Tµ  and Tσ  
are the mean and variance of timbre dissimilarity between two 
contiguous windows, AI  and AT are used for normalization.  
Thus, the total confidence is  

TI ConfConfConf ×−+×= )1( αα                 (6)               

where α  is a weighting factor and we set 5.0=α  in real 
implementation. 

A potential chance boundary is found between ith and (i+1)th 
window, if the following conditions are satisfied: 
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where Conf(i, j)  is the confidence that the segment boundary is 
at between ith and jth window, Th i is a threshold.  The first two 
conditions guarantee that a local peak exists, and the last 
condition can prevent very low peaks from being detected.  
The threshold is adaptively set according to its context as: 
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where N is the number of the previous and succeeding 
distances to predict threshold, and α  is an amplifier.  In our 
algorithm, we set N= 8, 5.1=α  to obtain optimal result.  That 
is, threshold is automatically set according to neighborhood of 
16 second, which is assumed to be the minimum length for 
one segment.   

The threshold works well in the whole song, but we still need 
to refine the boundaries if more than one potential boundaries 
exit in 16 second, since it contravenes  our assumption on the 
minimum length of a segment.  In this case, the distances 
between the current segment and its two neighbor segments 
are compared, and then combined with the more similar one. 

5 Experiments 
Two experiments are presented in this section to evaluate the 
proposed mood detection system.  The first experiment shows 
the performance on the selected music clips, inside of which 
the mood type is consistent.  In the second experiment, the 
mood tracking method is evaluated with some famous music 
works. 

5.1 Mood Detection on 20s Music Clips  

Our database contains about 250 pieces of music, composed 
mainly in the classical period and romantic period.  Choir, 
orchestra, piano and string quartet are all included to ensure 
the diversity of music style in the database.  Three music 
experts participated in selecting and annotating 200 
representative music clips of 20 seconds long from the 
database for each of the four mood clusters: Contentment, 

Depression, Exuberance and Anxious.  All these 800 music 
clips are used in the evaluation.  

Among these four clusters, clips in the Contentment cluster 
are mainly selected from Christian music and Serenade, while 
Exuberance clips are  mainly from Overture, March and 
Dancing music.   As for Depression and Anxious clusters , 
music is selected from much broader music genres, since 
there are no dominant genres as in the Contentment and 
Exuberance clusters.   Since the mood is usually changeable 
in a whole piece of classical music as we mentioned before, 
each music clip is of 20 seconds long, and selected carefully 
to ensure the perceived mood is consistent and representative.  
One example is Suppe’s “Light Cavalry”, which contains two 
clips in Depression and three clips in Exuberance.     

The classification results are calculated using a cross-
validation evaluation where the dataset to be evaluated is 
randomly partitioned so the 25% is used for testing and 75% 
is used for training.  The process is iterated with different 
random partitions and the results are averaged (for Table 2 
and Table 3, 10 iterations were performed).  It ensures that the 
calculated accuracy will not be biased because of a particular 
partitioning of training and testing.  The ± part shows the 
standard deviation of classification accuracy. 

In order to emphasize the importance of timbre and rhythm 
features in different mood groups, we used different 
weighting factors in Equation 3 and achieved the optimal 
average accuracy when 8.01 =λ , 4.02 =λ .  It confirms that 
timbre features are more important to classify Contentment 
and Depression in Group 1, and rhythm features are more 
important to discriminate Exuberance and Anxious in Group 2.  

 

 Contentment Depression Exuberance Anxious 

Contentment 76.6±7.6 21.8±7.2 0.5±0.8 1.2±1.2 

Depression 4.0±3.5 94.5±3.4 0±0 1.5±2.5 

Exuberance 0±0 0.8±1.3 85.5±3.2 13.7±4.8 

Anxious 0±0 0±0 11.5±6.7 88.5±6.7 

Table 2: Mood detection confusion matrix based on 
hierarchical framework 

 

 Contentment Depression Exuberance Anxious 

Contentment 75.0±11.8 25.0±11.8 0±0 0±0 

Depression 5.8±2.6 94.2±2.6 0±0 0±0 

Exuberance 1.5±2.6 0.7±1.3 64.7±20.5 33.0±18.3 

Anxious 0±0 0±0 11.7±7.9 88.3±7.9 

Table 3: Mood detection confusion matrix based on non-
hierarchical framework 

 



Table 2 shows the detailed results in the form of confusion 
matrix, where each row corresponds to the actual mood 
cluster and each column  to the predicted cluster.  As can be 
seen from Table 2, only 1.6% music in Group 1 (Contentment 
and Depression) is classified into Group 2 (Exuberance and 
Anxious), while only 0.4% music in Group 2 is classified into 
Group 1.  That is, the accuracy rate reaches about 99% in the 
first step, when intensity features are used to classify all 
music clips into two groups.  This result confirms the good 
performance of intensity features in discriminating the two 
groups of mood clusters , which severs as the basis for further 
classification by timbre and rhythm features. 
In order to compare the performance of above hierarchical 
framework and its non-hierarchical counterpart, a 
comparative experiment is also performed on the framework 
shown in Fig. 4, which integrates the three feature sets and 
carries on classification directly on it.  The corresponding 
results are shown in Table 3.  Comp ared Table 2 and Table 3, 
it can be seen that the overall classification accuracy for the 
proposed hierarchical framework is up to 86.3%, about 5.7% 
better than the non-hierarchical framework.  Meanwhile, the 
standard deviation of classification accuracy decreases from 
10.7% to 5.2%, which indicates that our framework is more 
constant.  It can be also seen, by adopting the proposed 
hieratical framework, the classification accuracies for all of 
the four clusters are improved, especially for Exuberance.  In 
non-hierarchical framework, about 33.0% Exuberance clips 
are classified into Anxious, while it is decreased by more than 
50% after using our hierarchical framework.  These 
experimental results show that the proposed hierarchical 
framework has a better performance than its non-hierarchical 
counterpart , by using the most efficient features for different 
mood clusters.   

5.2 Mood Tracking 

The proposed mood tracking method is also evaluated on 
several pieces of classical music and achieved satisfactory 
result.  For example, it can correctly detect that Haydn’s 
“Serenade” is constantly Contentment; and the second 
movement of Beethoven’s “Symphony No. 3” is mainly 
Depression. 

Fig. 5 shows the results of mood tracking for a part of “1812 
Overture” composed by Tchaikovsky (from 361s – 661s).  
The figure also shows the potential boundaries and refined 
boundaries.  It can be seen that almost all of the correct 
boundaries are recalled, although there exist some false 
alarms. This ensures that the mood inside one segment is 
consistent.  Compared the mood tracking results based on our 
approach, every 20s clips and the “ground truth”, it can be 
also seen that since our approach can detect the boundaries 
well, the resulting mood tracking performance is better than 
that of detecting mood every 20 seconds. 

6 Conclusion 

In this paper, we present a mood detection approach for 
classical music from acoustic data.  Thayer’s model of mood 
is adopted for mood taxonomy , and three efficient feature sets 
are extracted directly from acoustic data representing intensity, 
timbre and rhythm respectively.  A hierarchical framework is 
used to detect the mood in a music clip.  In order to detect the 
mood in a whole piece of music, a segmentation scheme is 
presented for mood tracking.  This algorithm achieves 
satisfactory accuracy in the experimental evaluations. 

There are many future improvements in the proposed 
algorithm.   We will work on extracting more powerful 
features to better represent music primitives in music 
perception.  Furthermore, we will try more efficient ways for 
mood tracking.  Finally, we will extent this mood detection 
algorithm to other styles such as pop music. 
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