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Abstract

Four audio feature sets are evaluated in their ability
to classify five general audio classes and seven pop-
ular music genres. The feature sets include low-level
signal properties, mel-frequency spectral coefficients,
and two new sets based on perceptual models of hear-
ing. The temporal behavior of the features is ana-
lyzed and parameterized and these parameters are in-
cluded as additional features. Using a standard Gaus-
sian framework for classification, results show that
the temporal behavior of features is important for both
music and audio classification. In addition, classifica-
tion is better, on average, if based on features from
models of auditory perception rather than on standard
features.

1 Introduction

Developments in Internet and broadcast technology enable
users to enjoy large amounts of multimedia content. With
this rapidly increasing amount of data, users require automatic
methods to filter, process and store incoming data. Some of
these functions will be aided by attachedmetadata, which pro-
vide information about the content. However, due to the fact
that metadata are not always provided, and because local pro-
cessing power has increased tremendously, interest inlocal au-
tomatic multimedia analysis has increased. A major challenge
in this field is the automatic classification of audio and mu-
sic (Wold et al., 1996; Spina & Zue, 1997; Scheirer & Slaney,
1997; Scheirer, 1998; Wang et al., 2000; Zhang & Kuo, 2001;
Li et al., 2001; Tzanetakis & Cook, 2002).

Most audio classification systems combine two processing
stages: feature extraction followed by classification. A vari-
ety of signal features have been used for this purpose, includ-
ing low-level parameters such as the zero-crossing rate, signal
bandwidth, spectral centroid, and signal energy. Another set
of features used, inherited from automatic speech recognizers,
is the set mel-frequency cepstral coefficients (MFCC). Typi-

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. c©2003 Johns Hopkins University.

cal performance of these feature sets in speech/music discrim-
ination tasks is around 95% (Toonen Dekkers & Aarts, 1995;
Scheirer & Slaney, 1997; Lu & Hankinson, 1998) but decreases
as the number of audio classes increases (Zhang & Kuo, 1998,
2001).

There has also been some recent work on automatic music genre
detection. Tzanetakis & Cook (2002) combine standard features
with representations of rhythm and pitch content and show clas-
sification performance in the range of 60%.

Several different classification strategies have been employed
in these studies, including multivariate Gaussian models, Gaus-
sian mixture models, self-organizing maps, neural networks, k-
nearest neighbor schemes and hidden Markov models. In some
cases, the the classification scheme does not influence the clas-
sification accuracy (Scheirer & Slaney, 1997; Golub, 2000),
suggesting that the topology of the feature space is relatively
simple. An important implication of these findings is that, per-
haps further advances could be made by developing more pow-
erful features or at least understanding the feature space, rather
than building new classification schemes.

Thus, our focus here is on features for classifying audio and
music. We compare the two feature sets most commonly used,
low-level signal properties and the MFCC, with two new fea-
ture sets and evaluate their performance in the classification of
a set of general audio classes and a set of popular music genres.
We also examine how the characterization of features’ tempo-
ral behavior can influence classification. The two new feature
sets, described in detail below, are based on perceptual models
of auditory processing.

2 Method

We compare four distinct feature extraction stages to evaluate
their relative performance while using the same classifier stage,
a Gaussian-based quadratic discriminant analysis (QDA) (Duda
& Hart, 1973). The feature sets (described below) are: (1) low-
level signal properties; (2) MFCC; (3) psychoacoustic features
including roughness, loudness and sharpness; and (4) an au-
ditory model representation of temporal envelope fluctuations.
The two new feature sets introduced in Secs. 2.1.3 and 2.1.4 are
based on models of human auditory processing. Each begins
with a bank of bandpass filters which represent the frequency
resolution of the peripheral human auditory system. These fil-
ters, termed critical band filters, reflect the channeling property
of the auditory system, i.e., signals that are passed through dif-



General Audio Class Classical Music Popular Music Speech Noise Crowd Noise
Number of Files 35 188 31 25 31

Popular Music Class Jazz Folk Electronica R&B Rock Reggae Vocal
Number of Files 38 23 27 43 37 11 9

Table 1: Audio database by class: number of audio files in each class.

ferent critical bands are, to a large extent, processed indepen-
dently (Glasberg & Moore, 1990).

Previous studies have shown that, for speech-music discrimina-
tion, 2nd-order statistics of features (over time) provide a better
basis for classification than the features themselves (Scheirer &
Slaney, 1997). In addition, Peeters et al. (2002) showed that
“dynamic features” provide a good basis for music summariza-
tion purposes. Here we apply this technique to audio and music
genre classification and include parameterized analyses of fea-
tures’ temporal fluctuations as additional features.

Two types of classification were performed, one on a set of five
general audio classes and a second on a set of popular mu-
sic genres. The general audio classes were: classical music,
popular music (non-classical genres), speech (male and female,
English, Dutch, German and French), crowd noise (applaud-
ing and cheering), and noise (background noises including traf-
fic, fan, restaurant, nature, etc. noises). The popular music
class contained music from seven genres: Jazz, Folk, Electron-
ica, R&B, Rock, Reggae, and Vocal. The database used in the
current study is a “quintessential” subset of a larger database.
Two subjects assigned each song a genre and rated the song as
to how well it typifies the genre. Songs were selected for the
quintessential database based on the overall rating. The number
of files in each class is given in Table 1.

2.1 Features
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Figure 1: Feature extraction method

The feature extraction process, illustrated in Fig. 1, includes
a summarized temporal analysis of features. Individual fea-
tures are calculated from 23-msec half-overlapping subframes
of audio. A power spectrum is then calculated for each feature,
across 64 consecutive subframe values, resulting in an overall
analysis frame of 743 msec. The power spectrum is normalized
by the DC value and summarized by calculating the energy in
four bands: 1) 0 Hz (average across observations), 2) 1-2 Hz

(on the order of musical beat rates), 3) 3-15 Hz (on the order
of speech syllabic rates), and 4) 20-43 Hz (in the lower range
of modulations contributing to perceptual roughness). The top
nine values (determined by a separate ranking procedure for
each feature set - see below) of this spectral summarization were
then selected and used in the classification process. This entire
process was performed separately for each feature set.

2.1.1 Low-level signal parameters

This feature set, based on standard low-level (SLL) signal pa-
rameters, includes: (1) root-mean-square (RMS) level, (2) spec-
tral centroid, (3) bandwidth, (4) zero-crossing rate, (5) spec-
tral roll-off frequency, (6) band energy ratio, (7) delta spectrum
magnitude, (8) pitch1, and (9) pitch strength. This set of fea-
tures is based on a recent paper by Li et al. (2001). [See the
paper for mathematical details.]

The final SLL feature vector consists of 36 features:

1-9: DC values of the SLL feature set
10-18: 1-2 Hz modulation energy of the SLL feature set
19-27: 3-15 Hz modulation energy of the SLL feature set
28-36: 20-43 Hz modulation energy of the SLL feature set

2.1.2 MFCC

The second feature set is based on the first 13 MFCCs (Slaney,
1998). The final feature vector consists of 52 features:

1-13: DC values of the MFCC coefficients
14-26: 1-2 Hz modulation energy of the MFCC coefficients
27-39: 3-15 Hz modulation energy of the MFCC coefficients
40-52: 20-43 modulation energy of the MFCC coefficients

2.1.3 Psychoacoustic features

The third feature set is based on estimates of the percepts rough-
ness, loudness and sharpness. Roughness is the perception of
temporal envelope modulations in the range of about 20-150 Hz,
maximal at 70 Hz, and is generally thought to be a primary
component of musical dissonance (Plomp & Levelt, 1965; Ter-
hardt, 1974). Loudness is the sensation of signal strength and
sharpness is a perception related to the spectral density and the
relative strength of high-frequency energy. Estimates of these
percepts were calculated based on current models (Zwicker &
Fastl, 1990; Daniel & Weber, 1997; Bismarck, 1974). Temporal
analyses of loudness and sharpness were calculated using the
subframe process described above. However, because rough-
ness is based on mid-rate temporal envelope modulations, an
accurate estimate can only be obtained for relatively long audio
frames (>∼ 180 msec). Thus, the temporal variation of rough-
ness within an audio frame is represented by its mean and stan-
dard deviation over 186-msec subframes with 93-msec overlap.

1The termpitch is used here to describe an estimate of the pitch
percept derived using an autocorrelation-based method (see Li et al.,
2001, for details).
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Figure 2: Classification performance using standard low-level features. Confusion matrices for classification based on the best 9
static features (left) and best 9 overall features, including static and temporal features (right). The top two panels show results for the
general audio classes, the bottom panels for the music genre classes. The numbers in the boxes indicate the probability (± standard
error) that the class on the left axis is classified as the class on the bottom axis. Where numbers are not present, the shade indicates
the probability: white = 0, black = 1.

The final psychoacoustic (PA) feature vector consists of 10 fea-
tures:

1: average roughness
2: standard deviation of roughness
3: average loudness
4: average sharpness
5: 1-2 Hz loudness modulation energy
6: 1-2 Hz sharpness modulation energy
7: 3-15 Hz loudness modulation energy
8: 3-15 Hz sharpness modulation energy
9: 20-43 Hz loudness modulation energy

10: 20-43 Hz sharpness modulation energy

2.1.4 Auditory filterbank temporal envelopes

The fourth feature set is based on a model representation of tem-
poral envelope processing by the human auditory system. Each
audio frame is processed in two stages: (1) it is passed through
a bank of 18 4th-order bandpass GammaTone filters (Glasberg
& Moore, 1990; Hartmann, 1997, chap. 10) spaced logarithmi-
cally from 26 to 9795 Hz; and (2) the modulation spectrum of
the temporal envelope is calculated for each filter output. The
spectrum of each filter is then summarized by summing the en-
ergy in four bands: 0 Hz (DC), 3-15 Hz, 20-150 Hz, and 150-
1000 Hz. The parameterized summary of high modulation rates
is not calculated for some low-frequency filters: a modulation
rate summary value is only computed for a critical band filter if
the filter’s center frequency is greater than the maximum rate of

the band. This process yields 62 features describing the audi-
tory filterbank temporal envelopes (AFTE):

1-18: DC envelope values of filters 1-18
19-36: 3-15 Hz envelope modulation energy of filters 1-18
37-52: 20-150 Hz envelope modulation energy of filters 3-18
53-62: 150-1000 Hz envelope modulation energy of filters 9-18

2.2 Classification

Classification of audio files was performed using quadratic dis-
criminate analysis (see Duda & Hart, 1973), which provided
better preliminary results than linear discriminate analysis. Fea-
tures were calculated from each file on 10 consecutive 743-msec
frames with a 558-msec hop-size. The feature vectors were
grouped into classes based on the type of audio and were used to
parameterize anN -dimensional Gaussian mixture model (one
Gaussian with its own mean and variance for each class), where
N is the length of the feature vector. Training and cross-
validation were done using the.632+ bootstrapmethod, an im-
proved version of the leave-one-out bootstrap (Efron & Tibshi-
rani, 1997, 1993). This method has been shown to provide es-
timates of prediction error with less variance than standard k-
fold cross-validation techniques, especially for small databases.
Bootstrap replications were performed 500 times for each class.
Classification was done per audio file and was assigned based
on the majority of 10 consecutive audio frame classifications.
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Figure 3: Classification performance using mel-frequency cepstral coefficients (MFCC): Same format as Fig. 2.

Although the size of the feature sets differ, we performed clas-
sification using the same number of features from each set. We
chose the best nine2 features from each set following an iterative
ranking procedure: for each feature, we estimated classifica-
tion error from theBhattacharyya distances(see, e.g., Papoulis,
1991) between classes and designated the top ranked feature as
that which gave the lowest error; we repeated this for 2, 3, ... 9
features.

3 Results

3.1 SLL feature set

The ranking results for the SLL feature set are shown in Ta-
ble 2. Different rankings are shown for each combination of
audio-class set (general audio or music genre) and feature type
(static or static-and-temporal). For general audio classification,
features 5 (spectral roll-off frequency), 6 (band-energy ratio),
and 1 (RMS level) rank the highest. When temporal features
are included, features 24 (3-15 Hz modulations of band-energy
ratio), 28 (20-43 Hz modulations of RMS level), and 26 (3-15
Hz modulations of pitch) are included in the top nine. For music
genre classification, the top ranked features are slightly differ-
ent: feature 3 (spectral bandwidth) is the top static feature and
feature 19 (3-15 Hz modulations of RMS level) is included in
the top nine. It is clear from these results that, when available,
temporal modulations (over a range of rates) of features are im-
portant for classification.

Classification results for the SLL feature set are shown in Fig. 2.

2We limited all feature sets to their top nine features because the
standard low-level feature set consists of only nine basic features.

Class Feature Feature Rank
Set Type 1 2 3 4 5 6 7 8 9

General Static 5 6 1 8 3 9 2 4 7
Audio Stat. & Temp. 5 6 1 24 8 3 28 26 9
Music Static 3 5 1 8 9 4 6 2 7
Genre Stat. & Temp. 24 5 1 4 8 6 3 19 28

Table 2: Feature ranking for the standard low level feature
set. Feature numbers correspond to the features described in
Sec. 2.1.1.

Each panel shows a confusion matrix that indicates the proba-
bility (± standard error) of each audio or music class (left axis)
being classified as each class in the group (bottom axis). The
top panels show results for general audio classification, the bot-
tom panels for music genre classification; the left panels show
results for classification based on static features; the right panels
for classification based on both static and temporal features.

In general classification is better when temporal features are in-
cluded. Although only one audio class (popular music) shows
a significant improvement, there is only one class (folk music)
for which performance decreased slightly. With temporal and
static features, overall classification performance is86±4% for
the general audio classes and61 ± 11% for the music genres.
For the general audio classes, classification is best for classical
music (98 ± 2%) and worst for background noise (60 ± 12%),
which is confused with crowd noise and classical music. For
the music genres, classification is best for folk (80 ± 9%) and
worst for R&B (49 ± 8%) which is confused with electronica
and reggae.
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Figure 4: Classification performance using psychoacoustic features. Same format as previous figures. Results shown on the left
panels were computed with only three static features: average loudness, roughness, and sharpness.

3.2 MFCC feature set

Table 3 shows the top ranked MFCC features for each audio-
class set and feature-type combination. For general audio clas-
sification, the first three MFCCs are highly ranked. When tem-
poral features are included, features 27 (3-15 Hz modulations
of MFCC 1) and 49 (20-43 Hz modulations of MFCC 10) are
included in the top nine. For classification of music genres,
the rankings are slightly different, but the first few MFCCs also
seem to be the most important. When temporal features are in-
cluded, feature 40 (20-43 Hz modulations of MFCC 1) is ranked
the highest. These results show that temporal modulations of
MFCCs are also important for classification.

Class Feature Feature Rank
Set Type 1 2 3 4 5 6 7 8 9

General Static 2 3 1 9 11 5 12 10 7
Audio Stat. & Temp. 2 27 1 49 3 5 9 11 7
Music Static 1 4 2 6 3 7 11 9 13
Genre Stat. & Temp. 40 1 4 2 6 27 3 11 13

Table 3: Feature ranking for the MFCC feature set. Feature
numbers correspond to the features described in Sec. 2.1.2.

Figure 3 shows the classification results for the MFCC feature
set. As with the SLL feature set, classification is better when
based on the top nine static-and-temporal features, rather than
the top nine static features. Overall classification based on both
feature types (right panels) is92 ± 3% for the general audio
classes and65 ± 10% for the music genres. Overall perfor-
mance is slightly better than the SLL feature set for general

audio classification, largely helped by an increased ability to
classify background noise and popular music. Classification of
classical music is, however, worse for the MFCC feature set
(89 ± 5% with MFCC vs.98 ± 2% with SLL). Overall classi-
fication performance of music genres is not significantly better
with MFCC features than SLL features (65± 10% with MFCC
vs. 61±11% with SLL), although classification performance of
rock music is significantly increased with MFCC features and
no music genres show a decrease in classification performance.

3.3 PA feature set

Class Feature Feature Rank
Set Type 1 2 3 4 5 6 7 8 9

General Static 4 1 3 · · · · · ·
Audio Stat. & Temp. 8 4 1 3 9 7 2 10 6
Music Static 4 1 3 · · · · · ·
Genre Stat. & Temp. 4 1 8 9 3 7 6 5 10

Table 4: Feature ranking for the psychoacoustic feature
set. Feature numbers correspond to the features described in
Sec. 2.1.3. Rankings 4-9 for static features are not applicable
because there are only 3 static psychoacoustic features.

Table 4 shows the top ranked psychoacoustic features for each
audio-class set and feature-type combination. Of the three static
features, feature 4 (average sharpness) is ranked highest, fol-
lowed by features 1 (average roughness) and 3 (average loud-
ness) for both general audio and music genre classification.
When temporal features are included, the top ranked features
include 8 (3-15 Hz modulations of sharpness) and 9 (20-43 Hz
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Figure 5: Classification performance using the auditory filterbank temporal envelope. Same format as previous figures.

modulations of loudness).

Classification results for the PA feature set are shown in Fig. 4.
As with the previous feature sets, the inclusion of temporal fea-
tures increases overall classification performance. (In this case,
the number of features used for classification also increased.)
The overall classification performance using both static and
temporal features is92 ± 3% for general audio classes and
62± 10% for music genres. These values are roughly the same
as those for the MFCC feature set.

3.4 AFTE feature set

Table 5 shows the top ranked features from the set describing
the auditory filter temporal envelope. The static features are the
DC outputs (no modulations) of the 18 bandpass filters, which
cover a range of center frequencies (260-9795 Hz). The top
nine static features for both general audio and music genre clas-
sification span the range of center frequencies. When temporal
features are included, several appear in the top nine rankings:
62 (150-1000 Hz modulations of filter 18), 25 (3-15 Hz mod-
ulations of filter 7), 41 (20-150 Hz modulations of filter 5), 52
(20-150 Hz modulations of filter 18), and 20 (3-15 Hz modu-
lations of filter 2). As with all the other feature sets, temporal
variations of features are important for classification.

Classification results for the AFTE feature vector are shown in
Fig. 5. Classification based on temporal and static features is
slightly better than on static features alone. Overall classifi-
cation performance (right panels,93 ± 2% for general audio
classes and74 ± 9% for music genres) is better than the other
feature sets, although the improvement is significant only for the
SLL feature set. For general audio classification, the most dif-

Class Feature Feature Rank
Set Type 1 2 3 4 5 6 7 8 9

General Static 3 18 11 1 4 8 7 6 5
Audio Stat. & Temp. 3 62 18 9 25 41 1 4 43
Music Static 2 18 3 16 1 12 17 15 6
Genre Stat. & Temp. 2 18 3 52 16 1 20 12 46

Table 5: Feature ranking for the AFTE feature set. Feature num-
bers correspond to the features described in Sec. 2.1.4.

ficult classes are background noise (85 ± 6%) and crowd noise
(91±3%), which are confused with each other. For music genre
classification, the most difficult genre is Reggae (61 ± 17%),
which is most often confused with electronica, R&B, and rock.

Overall classification results are summarized in Table 6. A com-
parison across all feature sets shows that, given our choices
of classes/genres, the AFTE features provide the highest mean
classification rates for both general audio and music genre clas-
sification. The differences in overall classification performance,
however, are only significant in a few cases: AFTE-SLL for
general audio; and AFTE-PA if only static features are used. If
we compare classification of specific classes, the AFTE is only
significantly outperformed by other feature sets in a few cases:
SLL features provide better classification of classical music and
crowd noise; MFCC features provide better classification of
crowd noise; and PA features provide better classification of
speech. On the other hand, the AFTE feature set significantly
outperforms all other feature sets in the classification of popular
music (general audio class) and jazz and R&B (music genres).

Table 6 also shows that, for every feature set, the inclusion of



Static Features Static and Temporal Features
SLL MFCC PA AFTE SLL MFCC PA AFTE

General Audio 80± 5% 87± 4% 76± 5% 90± 3% 86± 4% 92± 3% 92± 3% 93± 2%
Music Genre 55± 12% 57± 12% 41± 14% 70± 9% 61± 11% 65± 10% 62± 10% 74± 9%

Table 6: Classification Results Summary. Each entry gives the percent correct classification± standard error for the given set of
audio classes (left column) and feature set (top rows).

temporal features increases the mean overall classification per-
formance. The differences are not significant in overall classifi-
cation rates but they are for many individual classes.

4 Discussion

It is well known that, for audio signals, temporal envelope fluc-
tuations at specific rates play an important role in perception.
We have shown here that the explicit inclusion of parameters de-
scribing these modulations (not only in estimates of the tempo-
ral envelope but in other features as well) can increase the per-
formance of audio and music classifiers. We have also shown
that a feature set based on a model of auditory perception out-
performs other current standard feature sets in the classification
of general audio and music genre.

While the overall classification performance of our general au-
dio classes is quite high (93 ± 2%), music genre classification
is far from perfect (74 ± 9%). While this measure of perfor-
mance may seem low, it should be pointed out that the classes
of music genre do not always have distinct boundaries, which
makes their classification a fuzzy problem. We have attempted,
in our selection of audio files, to create an internally consis-
tent database so that each music genre contains examples with
similar audio qualities. In this manner we can evaluate which
features or properties of features are important for characteriz-
ing audio qualities relevant to musical genre. Nevertheless there
are a number of other (non-acoustic) properties that contribute
to labeling a piece of music as a specific genre, including artist,
album, and record label. These aspects of genre labeling will
not likely be accounted for in features extracted from the audio.
So, while we are using the classification of musical genre as a
means to measure how relevant our features are, they may never
be able to do the job perfectly. In comparison to results of other
studies of music genre classification (Tzanetakis et al., 2001;
Tzanetakis & Cook, 2002), our features looks quite promising.

Several limitations of the current study should be mentioned.
Our audio database is far from complete. We have shown clear
advantages of particular feature sets operating on our database
but these methods should be performed on larger data sets for
confirmation. In addition, a larger database would likely reduce
variance in our estimates of classification performance, and al-
low more conclusive comparisons between the different feature
sets.

Our assumption of Gaussian-shaped clusters in the feature space
may not be valid. Based on reasonably favorable results, it ap-
pears that it is not a bad assumption but we have not analyzed
the feature space to the point where we can quantitatively evalu-
ate this assumption. Classification performance could be further
improved by such an analysis followed by the incorporation of
perhaps more appropriate probability density functions.

Further improvements in classification performance could also

come from changes to the classifier. For example, it is pos-
sible that sequential classification using fewer classes at each
stage (i.e. grouping several classes initially) could result in
improved performance. One could use different features, per-
haps based on the Bhattacharyya distances between classes,
for each sequential stage. In addition, as more powerful fea-
tures for class discrimination are developed, different classifica-
tion schemes (self-organizing maps, neural networks, k-nearest
neighbor schemes and hidden Markov models) may begin to
show differences in performance.

Finally, combinations of the best features from each set could
also lead to improvements in classification performance. One
could rank the features across sets in the same manner that we
rank features within each feature set, and then choose the com-
bination that yields the best performance.

5 Conclusions

We have shown that audio classification can be improved by de-
veloping and working with improved audio features. Our com-
parison of current feature sets for this purpose shows that tem-
poral modulations of features are important for the classification
of audio and music.

Overall, we saw that the AFTE feature set is the most powerful.
However, for a few particular audio classes, classification was
better with other feature sets (crowd noise: SLL and MFCC;
classical music: SLL; speech: PA).

Future work will involve the development of new features, fur-
ther analysis of the feature space to test the Gaussian assump-
tion, examination of alternative classification schemes, and the
incorporation of more audio classes.
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