Features for Audio and Music Classification

Martin F. McKinney Jeroen Breebaart
Philips Research Laboratories Philips Research Laboratories
Prof. Holstlaan 4 (WY82) Prof. Holstlaan 4 (WY82)
5656 AA Eindhoven, The Netherlands 5656 AA Eindhoven, The Netherlands
martin.mckinney@philips.com jeroen.breebaart@philips.com
Abstract cal performance of these feature sets in speech/music discrim-

ination tasks is around 95% (Toonen Dekkers & Aarts, 1995;
Scheirer & Slaney, 1997; Lu & Hankinson, 1998) but decreases
to classify five general audio classes and seven pop- as the number of audio classes increases (Zhang & Kuo, 1998,

ular music genres. The feature sets include low-level 2001).

signal properties, mel-frequency spectral coefficients, There has also been some recent work on automatic music genre
and two new sets based on perceptual models of hear-  detection. Tzanetakis & Cook (2002) combine standard features
ing. The temporal behavior of the features is ana- with representations of rhythm and pitch content and show clas-
lyzed and parameterized and these parameters are in-  sification performance in the range of 60%.

cluded as additional features. Using a standard Gaus-
sian framework for classification, results show that
the temporal behavior of features is important for both
music and audio classification. In addition, classifica-
tion is better, on average, if based on features from
models of auditory perception rather than on standard
features.

Four audio feature sets are evaluated in their ability

Several different classification strategies have been employed
in these studies, including multivariate Gaussian models, Gaus-
sian mixture models, self-organizing maps, neural networks, k-
nearest neighbor schemes and hidden Markov models. In some
cases, the the classification scheme does not influence the clas-
sification accuracy (Scheirer & Slaney, 1997; Golub, 2000),
suggesting that the topology of the feature space is relatively
simple. An important implication of these findings is that, per-
1 Introduction haps further advances could be made by developing more pow-
erful features or at least understanding the feature space, rather
Developments in Internet and broadcast technology enablhan building new classification schemes.
users to enjoy large amounts of multimedia content. WithT
this rapidly increasing amount of data, users require automati
methods to filter, process and store incoming data. Some 9
these functions will be aided by attacheetadatawhich pro-
vide information about the content. However, due to the fac

hus, our focus here is on features for classifying audio and
usic. We compare the two feature sets most commonly used,
w-level signal properties and the MFCC, with two new fea-
gjre sets and evaluate their performance in the classification of

set of general audio classes and a set of popular music genres.
Ve also examine how the characterization of features’ tempo-
ral behavior can influence classification. The two new feature
gets, described in detail below, are based on perceptual models
of auditory processing.

cessing power has increased tremendously, interéstahau-
tomatic multimedia analysis has increased. A major challeng
in this field is the automatic classification of audio and mu-
sic (Wold et al., 1996; Spina & Zue, 1997; Scheirer & Slaney,
1997; Scheirer, 1998; Wang et al., 2000; Zhang & Kuo, 2001,

Li et al., 2001; Tzanetakis & Cook, 2002). 2 Method

Most audio classification systems combine two processingN four distinct feat tracti ¢ ¢ luat
stages: feature extraction followed by classification. A vari- € compare four distinct feature extraction stages 1o evaluate

; . : heir relative performance while using the same classifier stage
ety of signal features have been used for this purpose, includf . P vhiie using ; g€,
ing Iow—IgeveI parameters such as the zero—crospsing rate, sign |Gau55|an-based quadratic d|scr|m|n§1nt analysis (QDA) (Duda
bandwidth, spectral centroid, and signal energy. Another s Hart_, 1973). The _feature sets (described below) are (1) low-
of features used, inherited from automatic speech recognizer. vel signal properties; (2) MFCC; (3) psychoacoustic features

is the set mel-frequency cepstral coefficients (MFCC). Typi—'riCIUdlng roughness, Iou_dness and sharpness; and (4) an au-
ditory model representation of temporal envelope fluctuations.

The two new feature sets introduced in Secs. 2.1.3 and 2.1.4 are
Permission to make digital or hard copies of all or part of this work bgsed on models of huma_n audlto_ry processing. Each begins
for personal or classroom use is granted without fee provided thatwith a bank of bandpass filters which represent the frequency
copies are not made or distributed for profit or commercial advan- resolution of the peripheral human auditory system. These fil-
tage a“%that Coﬁ'es beakr.th's notice and the full citation on the first tars termed critical band filters, reflect the channeling property
page.(©2003 Johns Hopkins University. of the auditory system, i.e., signals that are passed through dif-




General Audio Class || Classical Music] Popular Music] Speech| Noise | Crowd Noise
Number of Files 35 188 31 25 31

Popular Music Class || Jazz| Folk | Electronica] R&B | Rock [ Reggae| Vocal
Number of Files 38 23 27 43 37 11 9

Table 1: Audio database by class: number of audio files in each class.

ferent critical bands are, to a large extent, processed indepe(en the order of musical beat rates), 3) 3-15 Hz (on the order
dently (Glasberg & Moore, 1990). of speech syllabic rates), and 4) 20-43 Hz (in the lower range
é)_f modulations contributing to perceptual roughness). The top
pine values (determined by a separate ranking procedure for
ach feature set - see below) of this spectral summarization were
en selected and used in the classification process. This entire
process was performed separately for each feature set.

Previous studies have shown that, for speech-music discrimin
tion, 2nd-order statistics of features (over time) provide a bette
basis for classification than the features themselves (Scheirer
Slaney, 1997). In addition, Peeters et al. (2002) showed th
“dynamic features” provide a good basis for music summariza
tion purposes. Here we apply this technique to audio and musiz.1.1 Low-level signal parameters
genre classification and include parameterized analyses of fe

tures’ temporal fluctuations as additional features. ?his feature set, based on standard low-level (SLL) signal pa-

rameters, includes: (1) root-mean-square (RMS) level, (2) spec-
Two types of classification were performed, one on a set of fivera| centroid, (3) bandwidth, (4) zero-crossing rate, (5) spec-
general audio classes and a second on a set of popular myal roll-off frequency, (6) band energy ratio, (7) delta spectrum
sic genres. The general audio classes were: classical musigagnitude, (8) pitch and (9) pitch strength. This set of fea-
popular music (non-classical genres), speech (male and femalgyes is based on a recent paper by Li et al. (2001). [See the

English, Dutch, German and French), crowd noise (applaudsaper for mathematical details.]
ing and cheering), and noise (background noises including traf-

fic, fan, restaurant, nature, etc. noises). The popular musi
class contained music from seven genres: Jazz, Folk, Electron- | o p~ 0o e o eature set

ica, R&B, Rock, Reggae, and Vocal. The database used inthe 310.18 1-2 Hz modulation energy of the SLL feature set
current study is a “quintessential” subset of a larger database. 19-27 3-15 Hz modulation energy of the SLL feature set
Two subjects assigned each song a genre and rated the song as?8-36 20-43 Hz modulation energy of the SLL feature set
to how well it typifies the genre. Songs were selected for the

quintessential database based on the overall rating. The numb&d-2 MFCC

he final SLL feature vector consists of 36 features:

of files in each class is given in Table 1. The second feature set is based on the first 13 MFCCs (Slaney,
2.1 Features 1998). The final feature vector consists of 52 features:
1-13 DC values of the MFCC coefficients
743-ms analysis frame 14-26 1-2 Hz modulation energy of the MFCC coefficients
e e -] 27-39 3-15 Hz modulation energy of the MFCC coefficients
23-ms subframes ) A 40-52 20-43 modulation energy of the MFCC coefficients
| Feature extraction |
% 2.1.3 Psychoacoustic features
Subframe
feature vectors | i The third feature set is based on estimates of the percepts rough-
| Feature spectral analysis | ness, loudness and sharpness. Roughness is the perception of
Spectral summarization temporal envelope modulations in the range of about 20-150 Hz,
of features maximal at 70 Hz, and is generally thought to be a primary
| Feature selection (9 best) | component of musical dissonance (Plomp & Levelt, 1965; Ter-
Final feature hardt, 1974). Loudness is the sensation of signal strength and
vector sharpness is a perception related to the spectral density and the

relative strength of high-frequency energy. Estimates of these
percepts were calculated based on current models (Zwicker &
Fastl, 1990; Daniel & Weber, 1997; Bismarck, 1974). Temporal
analyses of loudness and sharpness were calculated using the
subframe process described above. However, because rough-

The feature extraction process, illustrated in Fig. 1, included€SS is based on mid-rate temporal envelope modulations, an
a summarized temporal analysis of features. Individual fea@ccurate estimate can only be obtained for relatively long audio
tures are calculated from 23-msec half-overlapping subframeféames (-~ 180 msec). Thus, the temporal variation of rough-
of audio. A power spectrum is then calculated for each featurd}ess within an audio frame is represented by its mean and stan-
across 64 consecutive subframe values, resulting in an over#lgrd deviation over 186-msec subframes with 93-msec overlap.

analysis frame of 743 msec. The power spectrum is normalized i7he termpitch is used here to describe an estimate of the pitch

by the DC value and summarized by Ca|CU|atin.9 the energy ipercept derived using an autocorrelation-based method (see Li et al.,
four bands: 1) 0 Hz (average across observations), 2) 1-2 H2001, for details).

Figure 1: Feature extraction method
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Figure 2: Classification performance using standard low-level features. Confusion matrices for classification based on the best !
static features (left) and best 9 overall features, including static and temporal features (right). The top two panels show results for the
general audio classes, the bottom panels for the music genre classes. The numbers in the boxes indicate the prcibabidyd

error) that the class on the left axis is classified as the class on the bottom axis. Where numbers are not present, the shade indica
the probability: white =0, black = 1.

The final psychoacoustic (PA) feature vector consists of 10 feathe band. This process yields 62 features describing the audi-

tures: tory filterbank temporal envelopes (AFTE):
1 average roughness 1-18 DC envelope values of filters 1-18
g; g&/aer;gagdlg&\j"ﬁet?sn of roughness 19-36 3-15 Hz envelope modulation energy of filters 1-18
4: average sharpness 37-52 20-150 Hz envelope modulation. energy of filtgrs 3-18
5 1-2 Hz loudness modulation energy 53-62 150-1000 Hz enVelOpe modulation energy of filters 9-18
6: 1-2 Hz sharpness modulation energy
7: 3-15 Hz loudness modulation energy e
8. 3-15 Hz sharpness modulation energy 2.2 Classification
9: 20-43 Hz loudness modulation energy . L . L
10; 20-43 Hz sharpness modulation energy Classification of audio files was performed using quadratic dis-

criminate analysis (see Duda & Hart, 1973), which provided
better preliminary results than linear discriminate analysis. Fea-
tures were calculated from each file on 10 consecutive 743-msec
The fourth feature set is based on a model representation of tefframes with a 558-msec hop-size. The feature vectors were
poral envelope processing by the human auditory system. Eadrouped into classes based on the type of audio and were used to
audio frame is processed in two stages: (1) it is passed througiarameterize atv-dimensional Gaussian mixture model (one

a bank of 18 4th-order bandpass GammaTone filters (Glasbef@aussian with its own mean and variance for each class), where
& Moore, 1990; Hartmann, 1997, chap. 10) spaced logarithmiV is the length of the feature vector. Training and cross-
cally from 26 to 9795 Hz; and (2) the modulation spectrum ofvalidation were done using th&32+ bootstrapmethod, an im-

the temporal envelope is calculated for each filter output. The@roved version of the leave-one-out bootstrap (Efron & Tibshi-
spectrum of each filter is then summarized by summing the errani, 1997, 1993). This method has been shown to provide es-
ergy in four bands: 0 Hz (DC), 3-15 Hz, 20-150 Hz, and 150-timates of prediction error with less variance than standard k-
1000 Hz. The parameterized summary of high modulation ratefold cross-validation techniques, especially for small databases.
is not calculated for some low-frequency filters: a modulationBootstrap replications were performed 500 times for each class.
rate summary value is only computed for a critical band filter if Classification was done per audio file and was assigned based
the filter's center frequency is greater than the maximum rate obn the majority of 10 consecutive audio frame classifications.

2.1.4 Auditory filterbank temporal envelopes
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Figure 3: Classification performance using mel-frequency cepstral coefficients (MFCC): Same format as Fig. 2.

Although the size of the feature sets differ, we performed clasf Céass F$_ature M- Fiatuge %a”'; T

sification using the same number of features from each set. \/\eG et | Sm'e = [ = [ . [ 5 [ 3 [ 9[ 5 [ - [ 5
; ; ; ; enera atic

cholf_e the bestdnlﬁéie?turesfrhorfn each set following ag |t?rat|_\]:_ef Audio | Stat & Temp [ 5 (6 L2418 328261 9

ranking procedure: for each feature, we estimated classifica—ysic Staiic 3 T5T11 89461 2 7

tion error from theBhattacharyya distancésee, e.g., Papoulis, | Genre [Stat. & Temp. |24 [5[1[ 4 [8[6] 3 [ 1928

1991) between classes and designated the top ranked feature as

that which gave the lowest error; we repeated this for 2, 3, ... Jable 2: Feature ranking for the standard low level feature

features. set. Feature numbers correspond to the features described in
Sec. 2.1.1.

3 Results

3.1 SLL feature set

The ranking results for the SLL feature set are shown in Ta_Each panel shows a confusion matrix that indicates the proba-

ble 2. Different rankings are shown for each combination 01bility (£ standard error) of each audio or music class (left axis)

audio-class set (general audio or music genre) and feature tyr;fging classified as each class in the group (bottom axis). The

(static or static-and-temporal). For general audio classificatio Op panels show results for general audio classification, the bot-

features 5 (spectral roll-off frequency), 6 (band-energy ratio) om panels for r_nysig: genre classifica}tion; the I?ft panels show
and 1 (RMS level) rank the highest. When temporal feature esults fc_)r_cla_SS|f|cat|on based on stancfeatures, the right panels
are included, features 24 (3-15 Hz modulations of band-energ r classification based on both static and temporal features.
ratio), 28 (20-43 Hz modulations of RMS level), and 26 (3-15In general classification is better when temporal features are in-
Hz modulations of pitch) are included in the top nine. For musiccluded. Although only one audio class (popular music) shows
genre classification, the top ranked features are slightly differa significant improvement, there is only one class (folk music)
ent: feature 3 (spectral bandwidth) is the top static feature anfbr which performance decreased slightly. With temporal and
feature 19 (3-15 Hz modulations of RMS level) is included instatic features, overall classification performanc&is- 4% for
the top nine. It is clear from these results that, when availablethe general audio classes afid+ 11% for the music genres.
temporal modulations (over a range of rates) of features are infor the general audio classes, classification is best for classical
portant for classification. music 08 + 2%) and worst for background noise)(+ 12%),
2which is confused with crowd noise and classical music. For
the music genres, classification is best for fak ¢ 9%) and

2We limited all feature sets to their top nine features because thworst for R&B (49 + 8%) which is confused with electronica
standard low-level feature set consists of only nine basic features. and reggae.

Classification results for the SLL feature set are shown in Fig.
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Figure 4: Classification performance using psychoacoustic features. Same format as previous figures. Results shown on the le
panels were computed with only three static features: average loudness, roughness, and sharpness.

3.2 MFCC feature set audio classification, largely helped by an increased ability to

classify background noise and popular music. Classification of

Table 3 shows the top ranked MFCC features for each aUd'Oélassical music is, however, worse for the MFCC feature set

class set and feature-type combination. For general audio cla&gg + 5% with MECC vs. 98 -+ 2% with SLL). Overall classi-

sification, the first three MFCCs are highly ranked. When teMsication performance of music genres is not significantly better

poral features are included, features 27 (3-15 Hz modulationa;l. .
X ith MFCC features than SLL feature®s(+ 10% with MFCC
of MFCC 1) and 49 (20-43 Hz modulations of MFCC 10) are vs. 61+ 11% with SLL), although classification performance of

mcehigﬁlgir:nstg?etgl? Ellnec.jiﬁz(:;nctlat?j;f;ﬁzt:‘ﬁgt?:zwml\ﬁ:lccgggizrmk music is significantly increased with MFCC features and
9 ghtly ' -no music genres show a decrease in classification performance.
seem to be the most important. When temporal features are in-

cluded, feature 40 (20-43 Hz modulations of MFCC 1) isranked.3 PA feature set
the highest. These results show that temporal modulations of

; P Class Feature Feature Rank
MFCCs are also important for classification. Sot Type TT2[3[4[5]6]7[ 8]0
Class Feature Feature Rank General Static 4113 -|-[-[-[-1]"-
Set Type [2]3[4[5[6]7[8]09 Audio [ Stat. &Temp. [|[8[4[1|3[9]|7[2[10] 6
~ Music Static 412113 -] - .
General] _Static s119 111} 5112/10] 7 Genre [Stat & Temp. [[4[ 1819376510

Music Static 4 63| 7[11] 9|13 ) )
Genre [Stat. & Temp. |[40] 1 2162731113 Table 4: Feature ranking for the psychoacoustic feature

set. Feature numbers correspond to the features described in
Table 3: Feature ranking for the MFCC feature set. Featur&ec. 2.1.3. Rankings 4-9 for static features are not applicable
numbers correspond to the features described in Sec. 2.1.2. because there are only 3 static psychoacoustic features.

1 3
2 1
Audio [Stat. & Temp. || 2 [27[1[49] 3 |59 [11] 7
1 2
.\

[@

Figure 3 shows the classification results for the MFCC featurdable 4 shows the top ranked psychoacoustic features for each
set. As with the SLL feature set, classification is better wheraudio-class set and feature-type combination. Of the three static
based on the top nine static-and-temporal features, rather thématures, feature 4 (average sharpness) is ranked highest, fol-
the top nine static features. Overall classification based on botlowed by features 1 (average roughness) and 3 (average loud-
feature types (right panels) 2 + 3% for the general audio ness) for both general audio and music genre classification.

classes an@5 + 10% for the music genres. Overall perfor- When temporal features are included, the top ranked features
mance is slightly better than the SLL feature set for generainclude 8 (3-15 Hz modulations of sharpness) and 9 (20-43 Hz
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Figure 5: Classification performance using the auditory filterbank temporal envelope. Same format as previous figures.

modulations of loudness). Class Feature Feature Rank

Set Type I[2[3[4[5]6][7[8]09
Classification results for the PA feature set are shown in Fig. 4/ General Static 3/18/11] 11418171615
As with the previous feature sets, the inclusion of temporal fea-| Audio [Stat. & Temp.|[[3[62[18] 9 25|41 1 | 4 [ 43
tures increases overall classification performance. (In this case, Music Static 2|18 3[16] 1 [12]17[15] 6
the number of features used for classification also increasedl) Génre | Stat. & Temp. [2]18] 3 [52[16] 1 [20]12] 46

The overall classification performance using both static an
temporal features 192 + 3% for general audio classes and
62 4+ 10% for music genres. These values are roughly the sam
as those for the MFCC feature set.

dI'able 5: Feature ranking for the AFTE feature set. Feature num-
Qers correspond to the features described in Sec. 2.1.4.

3.4 AFTE feature set ficult classes are background noisé (- 6%) and crowd noise

Table 5 shows the top ranked features from the set describingli.3%)’.WhICh are conqugd with each other. For mUS(I)C genre
the auditory filter temporal envelope. The static features are th a_ssm_catlon, the most d|ff|cult_genre IS R_eggﬁe & 17%),
DC outputs (no modulations) of the 18 bandpass filters, whicPth'Ch is most often confused with electronica, R&B, and rock.
cover a range of center frequencies (260-9795 Hz). The toPverall classification results are summarized in Table 6. A com-
nine static features for both general audio and music genre claparison across all feature sets shows that, given our choices
sification span the range of center frequencies. When temporaf classes/genres, the AFTE features provide the highest mean
features are included, several appear in the top nine rankingslassification rates for both general audio and music genre clas-
62 (150-1000 Hz modulations of filter 18), 25 (3-15 Hz mod- sification. The differences in overall classification performance,
ulations of filter 7), 41 (20-150 Hz modulations of filter 5), 52 however, are only significant in a few cases: AFTE-SLL for
(20-150 Hz modulations of filter 18), and 20 (3-15 Hz modu-general audio; and AFTE-PA if only static features are used. If
lations of filter 2). As with all the other feature sets, temporalwe compare classification of specific classes, the AFTE is only
variations of features are important for classification. significantly outperformed by other feature sets in a few cases:
Classification results for the AFTE feature vector are shown inS LL featur es. provide better classific_ation of classica! '.“””S.ic and
I%rowd noise; MFCC features provide better classification of

Fig. 5. Classification based on temporal and static features d noise- and PA feat ide better classificati f
slightly better than on static features alone. Overall classificTOWd NOISE; an eatures provige better classitication o

cation performance (right panel83 + 2% for general audio speech. On the other hand, the AFTE featu_rg set significantly
classes and4 + 9% for music genres) is better than the 0,[heroutperforms all other feature sets in the classification of popular
feature sets, although the improvement is significant only for th&UsIC (general audio class) and jazz and R&B (music genres).
SLL feature set. For general audio classification, the most difTable 6 also shows that, for every feature set, the inclusion of



Static Features Static and Temporal Features
SLL [ MFCC ] PA | AFTE SLL [ MFCC ] PA [ AFTE
General Audio || 80+5% | 87+4% 76 +£5% | 90+3% || 86 + 4% 92 £+ 3% 92+3% | 93+ 2%
Music Genre || 55 £ 12% | 57+ 12% | 41 £14% | 70+ 9% || 61 £ 11% | 65 £ 10% | 62+ 10% | 74 + 9%

Table 6: Classification Results Summary. Each entry gives the percent correct classificatanmdard error for the given set of
audio classes (left column) and feature set (top rows).

temporal features increases the mean overall classification pezome from changes to the classifier. For example, it is pos-

formance. The differences are not significant in overall classifisible that sequential classification using fewer classes at each
cation rates but they are for many individual classes. stage (i.e. grouping several classes initially) could result in
improved performance. One could use different features, per-

. i haps based on the Bhattacharyya distances between classes,

4 Discussion for each sequential stage. In addition, as more powerful fea-
: L tures for class discrimination are developed, different classifica-

Itis well known that, for audio S|gn.als, temporal envelope fIlf'c'tion schemes (self-organizing maps, neural networks, k-nearest

L . nneighbor schemes and hidden Markov models) may begin to
We have shown here that the explicit inclusion of parameters deg, 5\ gifferences in performance.

scribing these modulations (not only in estimates of the tempo-
ral envelope but in other features as well) can increase the pefrinally, combinations of the best features from each set could
formance of audio and music classifiers. We have also show@lso lead to improvements in classification performance. One
that a feature set based on a model of auditory perception ougould rank the features across sets in the same manner that we

performs other current standard feature sets in the classificatid@nk features within each feature set, and then choose the com-
of general audio and music genre. bination that yields the best performance.

While the overall classification performance of our general au- .
dio classes is quite hig9§ + 2%), music genre classification 5 Conclusions

is far from perfect 14 + 9%). While this measure of perfor- _ I .
mance may seem low, it should be pointed out that the classeVe have shown that audio classification can be improved by de-

of music genre do not always have distinct boundaries, Whicl){eIOping and working with improved audio features. Our com-

makes their classification a fuzzy problem. We have attempted)arison of current feature sets fOT this purpose shows t_h_at tem-
in our selection of audio files, to create an internally COnSiSp’oral modulations of features are important for the classification

tent database so that each music genre contains examples withaudio and music.

similar audio qualities. In this manner we can evaluate whictOverall, we saw that the AFTE feature set is the most powerful.
features or properties of features are important for characteriz-dowever, for a few particular audio classes, classification was
ing audio qualities relevant to musical genre. Nevertheless thetgetter with other feature sets (crowd noise: SLL and MFCC;
are a number of other (non-acoustic) properties that contributelassical music: SLL; speech: PA).
g;gi?nel'gg darg'sgﬁj?;bmelfs'%ﬁzsaesgsgggsggprgee’r'l?glllfggﬁnzrt\';ﬁuture work will involve the development of new feat_ures, fur-
not Iikély be accounted fé)r in features extracted from the audioy o analys_|s qf the feature space 1o test t he Gaussian assump-
So, while we are using the classification of musical genre as tion, exam.lnat|on of altern.atlve classification schemes, and the

’ ﬁmorporatlon of more audio classes.
means to measure how relevant our features are, they may never
be able to do the job perfectly. In comparison to results of othepcknowledgments
studies of music genre classification (Tzanetakis et al., 2001;
Tzanetakis & Cook, 2002), our features looks quite promising.The authors would like to thank Armin Kohlrausch of Philips
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. ; Jong and Fabio Vignoli of Philips Research for their assistance

Our audio database is far from complete. We have shown cle.'#; building the audio database
advantages of particular feature sets operating on our database 9 '
but these methods should be performed on larger data sets fRieferences
confirmation. In addition, a larger database would likely reduce_. .
variance in our estimates of classification performance, and a__lsmarck, G. von. (1974). Sharpness as an attribute of the
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pears that it is not a bad assumption but we have not analyzed .

the feature space to the point where we can quantitatively evalPuda R., & Hart, P. (1973)Pattern classification and scene
ate this assumption. Classification performance could be furthénalysis.New York: Wiley.

improved by such an analysis followed by the incorporation of

h iat bability density functi Efron, B., & Tibshirani, R. (1997). Improvements on cross-
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