
Design Patterns in XML Music Representation

 Perry Roland
Digital Library Research & Development Group

University of Virginia

Charlottesville, VA 22903-4149 USA
pdr4h@virginia.edu

Abstract

Design patterns attempt to formalize the discussion
of recurring problems and their solutions. This paper
introduces several XML design patterns and
demonstrates their usefulness in the development of
XML music representations. The patterns have been
grouped into several categories of desirable outcome
of the design process – modularity, separation of data
and meta-data, reduction of learning requirements,
assistance to tool development, and increase in
legibility and understandability. The Music Encoding
Initiative (MEI) DTD, from which the examples are
drawn, the examples, and other materials related to
MEI are available at http://www.people.virginia.edu/
~pdr4h/.

1 Introduction

Design patterns attempt to formalize the discussion of
recurring problems and their solutions (Gamma, Helm,
Johnson & Vlissides, 1995). Since common problems with
(hopefully!) common solutions occur in many domains,
patterns are used in almost every part of development. Design
patterns are an effective way to share design decisions that
actually work.

Several XML design patterns, drawn mostly from (Lainevool,
n.d.), are introduced and their usefulness in the development
of XML music representations is demonstrated. Because XML
Schemas do not support specialized entities and parametric
references, limiting the user's ability to extend the schema in
an ad hoc fashion, and because they are more verbose and
more complex (Valentine, Dykes & Tittel, 2002), this paper
concentrates on the design of a (mostly) data-centric, i.e.,
designed to be processed by a machine rather than read by a
human, Document Type Declaration (DTD). Of course, there
are additional design patterns that are not covered. It is,
however, the author's hope that enough patterns have been
covered to generate additional discussion of the design of
DTDs for music representation.

The Music Encoding Initiative (MEI) DTD, from which the
examples are drawn, is both philosophically and technically
related to the Text Encoding Initiative DTD (TEI, 2002). The
complete DTD, the examples, and other materials related to
MEI are available at http://www.people.virginia.edu/~pdr4h/.
Readers unfamiliar with XML may wish to refer to a general
introduction, such as The XML Companion (Bradley, 2000).

2 Modular Design

Modular design offers several advantages. First, it eases the
burden of DTD maintenance by isolating changes. In addition,
extensibility is increased since any module may be replaced in
its entirety at will. Also, when each DTD module declares a
single document element, it may be used independently of the
main DTD, allowing the creation of the markup to be divided
among several authors who need not have knowledge of the
entire DTD. Finally, it enables the utilization of significant
portions of the markup, such as the file header or MIDI
performance data, in other contexts. The primary technique for
achieving a modular design is to employ multiple secondary
DTDs. The principal DTD typically takes the form of a
"driver" which references the subsidiary modules.

3 Separation of data and meta-data

It is generally agreed that a clear separation between data and
meta-data is highly desirable. In fact, separating these is the
primary goal of DTD design as the separation itself reflects
the worldview of the DTD creator. In other words, it clarifies
the intended use of the DTD as well as the structure of any
markup that is to be validated against the DTD. In addition,
separating meta-data from its corresponding data allows the
meta-data to be shared with other entities to which it also
applies.

Elements are best used for structurally significant information
while attributes are best used for atomic characteristics of an
object that have no identity of their own. In other words, an
attribute models part of the internal state of an object. (Stuhec,
2002) When an atomic characteristic is repeatable or must
have an internal hierarchical structure, it may be represented
by an element. However, these requirements can often be
satisfied through the use of multiple attributes or repetition of
the principal object with different attributes.

Just as the entity->property, or "has a", relationship is best
modeled using attributes for each property, relationships

Permission to make digital or hard copies of all or part of this work for
personal of classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page.  2003 The Johns Hopkins
University.

among entities, such as those characterized as "is a",
"complements", etc., are best expressed via attributes as well.
(Jelliffe, 1998) The representation of multiple hierarchies, that
is, multiple parent-child relationships among a set of entities,
particularly benefits from this kind of treatment.

4 Reduction Of Learning Requirements

With large DTDs, users are required to learn the content
models and attributes for a large number of entities. Aside
from simply reducing the number of entities, making the DTD
less useful, there are a number of techniques that can be used
to reduce the learning requirements of a new user and assist
the experienced user in remembering the details of how to
apply the DTD.

New users often require longer, descriptive names while
experienced users prefer shorter, mnemonic ones. Localized
names, i.e., in a different language, for a special user group,
such as students or application programmers, or for reduction
of storage requirements, are also often necessary.
Furthermore, the name of an entity may change during the
DTD development process or may even change between
stages of encoding or processing.

Perhaps even more important than the selection of appropriate
identifiers, is the selection of entities that match the
granularity of the problem domain. In addition to the
techniques listed in section 3, proper use of container and
collection elements increases usability.

5 Assisting Tool Development

While a DTD should ideally be designed without any
particular application in mind, in practice, without some
general idea about how the data will be used, there's no point
in creating the DTD in the first place!

In a data-centric representation, attributes are easier to
mechanically process. Also, since accessing attributes does
not require recursive or iterative processing, unlike embedded
elements, using them may result in speedier processing.

Machine processing of a representation can be improved by
also encoding the meta-data before the data it refers to. For
example, because an HTML table's width and height are
recorded before the actual table data, the table can be laid out
and the data "dropped in". Similarly, if the meta-data for a
music score is encoded before the actual data, such as notes
and rests, then rendering decisions can be made much more
effectively than if encoding intermingles the data and the
meta-data.

Also, when meta-data is recorded first, several entities may
refer to a single instance of the meta-data, reducing the size
and complexity of the markup instance as well as the tool to
manipulate it.

Because all of the ways in which it might be processed cannot
always be foreseen, flexibility and extensibility should be built
into a DTD. Extensibility is defined as the ability to add to an
element's content model while leaving the basic declaration
unchanged. Flexibility is defined as editing an entire content
model for a particular purpose – the basic content model may
be extended or restricted. These qualities are necessary in

order to extend the useful life of the DTD. This is especially
important for music representation because the repertoire to be
encoded is vast and encoding is expensive. Because XML
Schemas do not support parameter entities, this level of
flexibility is difficult to implement using them. The usual way
of providing an extensible content model in a DTD is to
introduce a parameter entity into an element's content model.
A similar degree of flexibility and extensibility may be
achieved for attributes by declaring most, if not all, attributes
for an element inside a parameter entity as well.

6 Increasing Legibility And Understandability

If a DTD is well designed, its useful lifetime will probably
extend beyond the lifetime of the tools that use it. Therefore,
despite the existence of tools that hope to hide the details of
the DTD from the inexperienced, eventually someone,
somewhere must be able to read and understand it, even if it is
just to write another tool of the same sort. For this reason, it is
wise for DTD creators to employ design patterns that increase
the legibility and understandability of the DTD.

A flyweight (Gamma, et al., 1995) abstracts common markup
declarations into a single reusable entity. Using a flyweight
design pattern can ease the burden of DTD maintenance by
eliminating errors that might be introduced when the same
information is repeated and by reducing the size of the DTD.

Since the usability of a DTD depends to a certain extent on
consistency, often a set of attributes is provided that can be
placed on all elements, or on significant subsets of elements.
If users can expect common attributes on every element, their
ability to use the DTD can be enhanced. Also, it is easier to
process a document that has a consistently applied set of
common attributes. The common attributes are typically
declared in a flyweight in order to enhance maintainability.

References

Bradley, N. (2002). The XML Companion (3rd ed.). London:
Addison-Wesley.

Gamma, E., Helm, R., Johnson, R, & Vlissides, J. (1995).
Design Patterns: Elements of Reusable Object-Oriented
Software. Reading, MA: Addison Wesley.

Jelliffe, R. (1998). The XML and SGML Cookbook: Recipes
for Structured Information. Charles F. Goldfarb Series on
Open Information Management. Upper Saddle River, NJ:
Prentice Hall PTR.

Lainevool, T. (n.d.). XML Patterns.com Home Page.
Retrieved May 2, 2003, from http://www.XMLPatterns.com/.

Stuhec, G. (2002). Elements versus Attributes in Position
Papers. Retrieved May 2, 2003 from http://oasis-
open.org/committees/ubl/200203/ndrsc/review/draft-

ndr-20020316.pdf.

TEI Consortium (2002). TEI Guidelines. Retrieved May 2,
2003 from http://www.tei-c.org/Guidelines2/
index.html.

Valentine, C., Dykes, L., & Tittel, E. (2002). XML Schemas.
Alameda, CA.

