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Abstract

Automatic extraction of content description from
commercial audio recordings has a number of impor-
tant applications, from indexing and retrieval through
to novel musicological analyses based on very large
corpora of recorded performances. Chord sequences
are a description that captures much of the charac-
ter of a piece in a compact form and using a mod-
est lexicon. Chords also have the attractive property
that a piece of music can (mostly) be segmented into
time intervals that consist of a single chord, much as
recorded speech can (mostly) be segmented into time
intervals that correspond to specific words. In this
work, we build a system for automatic chord tran-
scription using speech recognition tools. For features
we use “pitch class profile” vectors to emphasize the
tonal content of the signal, and we show that these
features far outperform cepstral coefficients for our
task. Sequence recognition is accomplished with hid-
den Markov models (HMMs) directly analogous to
subword models in a speech recognizer, and trained
by the same Expectation-Maximization (EM) algo-
rithm. Crucially, this allows us to use as input only
the chord sequences for our training examples, with-
out requiring the precise timings of the chord changes
— which are determined automatically during train-
ing. Our results on a small set of 20 early Beatles
songs show frame-level accuracy of around 75% on a
forced-alignment task.
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1 Introduction

The human auditory system is capable of extracting rich and
meaningful data from complex audio signals. Machine listening
research attempts to model this process using computers. In the
music domain, there has been limited success when the input
signal or analysis is relatively simple, i.e. single instrument,
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beat detection, etc. Unfortunately, for complex signals, such
as ensemble performances, or more complex analyses, such as
pitch transcription, the task rapidly increases in difficulty. In
this paper we investigate a problem with complexity in both
dimensions, chord recognition on unstructured, polyphonic, and
multi-timbre audio. A system able to transcribe an arbitrary
audio recording into an accurate chord sequence would have
many applications in finding particular examples or themes in
large audio databases, as well as enabling interesting new large-
scale statistical analyses of musical content.

Our specific approach uses the hidden Markov models (HMMs)
made popular in speech recognition (Gold and Morgan, 1999),
including the sophisticated Expectation-Maximization (EM) al-
gorithm used to train them. This is a statistical approach, in
which the wide variety of feature frames falling under a sin-
gle label is modeled as random variation that follows an esti-
mated distribution. By making a direct analogy between the
sequence of discrete, non-overlapping chord symbols used to
describe a piece of music, and the word sequence used to de-
scribe recorded speech, much of the speech recognition frame-
work can be used with minimal modification. In particular, no
timing alignment is required between the chord labels and the
training audio — using the constraints of the chord sequence
alone, the EM approach converges to find optimal segmenta-
tions.

We draw on the prior work of Fujishima (1999) who proposed a
representation of audio termed “pitch class profiles” (PCPs), in
which the Fourier transform intensities are mapped to the twelve
semitone pitch classes (chroma). This is very similar to the
“chroma spectrum” proposed by Bartsch and Wakefield (2001).
The assumption is that this representation captures harmonic in-
formation in a more meaningful way, thereby facilitating chord
recognition. Fujishima’s system uses nearest-neighbor classifi-
cation to chord templates, and performed well on samples con-
taining a single instrument.

Our system has parallels with the work by Raphael (2002), who
also uses HMMs trained by EM to transcribe music in terms of
chord labels. However, since his ultimate goal is note-level tran-
scription, his “chord” vocabulary distinguishes between each
different combination of simultaneous notes, in contrast to our
approach of having a single model for “A minor” etc. This huge
state space precludes direct training of models for each chord,
and instead structural information about the harmonics expected
for any given note combination are used to select among a rel-
atively small set of model ‘factors’, from which the desired



chord models may be assembled. His system is applied to clean
recordings of solo piano music.

In section 2, we describe the structure of our chord analysis sys-
tem in detail. Section 3 describes the experiments we conducted
to evaluate the system, by training and testing on a small collec-
tion of 20 early Beatles songs. Finally, section 4 discusses our
future work followed by our conclusions.

2 System

The chord recognition system is presented below.

First the input signal is transformed to the frequency domain.
Then it is mapped to the PCP domain by summing and normal-
izing the pitch chroma intensities, for every time slice. These
features are then used to build chord models via EM. Finally,
chord alignment/recognition is performed with the Viterbi al-
gorithm.

2.1 Pitch Class Profile Features

Monophonic music recordings x[n] sampled at 11025 Hz are
divided into overlapping frames of N = 4096 points and con-
verted to a short-time Fourier transform (STFT) representation,

XSTFT [k, n] =
N−1∑

m=0

x[n−m] · w[m] · e−j2πkm/N (1)

where k indexes the frequency axis with 0 ≤ k ≤ N − 1, n is
the short-time window center, and w[m] is anN -point Hanning
window. The STFT is then mapped to the Pitch Class Profile
(PCP) features, which traditionally consist of 12-dimensional
vectors, with each dimension corresponding to the intensity of
a semitone class (chroma). The procedure collapses pure tones
of the same pitch class, independent of octave, to the same PCP
bin; for complex tones, the harmonics also fall into particular,
related bins. Frequency to pitch mapping is achieved using the
logarithmic characteristic of the equal temperament scale. Our
experiments use a finer grained PCP vector of 24 dimensions
to give some flexibility in accounting for slight variations in
tuning. A step size of 100ms, or 10 PCP frames per second, is
employed. STFT bins k are mapped to PCP bins p according
to:

p(k) = �24 · log2(k/N · fsr/fref )� mod 24 (2)

where fref is the reference frequency corresponding to PCP [0]
and fsr is the sampling rate. For each time slice, we calculate
the value of each PCP element by summing the magnitude of
all frequency bins that correspond to a particular pitch class i.e.
for p = 0, 1, · · · , 23,

PCP [p] =
∑

k:p(k)=p

|X [k]|2 (3)

2.2 Hidden Markov Models

PCP vectors are used as features to train a hidden Markov model
(HMM) with one state for each chord distinguished by the sys-
tem. An HMM is a stochastic finite automaton in which each
state generates an observation. The state transitions obey the
Markovian property, that given the present state, the future is
independent of the past. (For an introduction to HMMs, see
Gold and Morgan (1999)).

To model the PCP vector distribution for each state, we assume
a single Gaussian in 24 dimensions, described by its mean vec-
tor µi and covariance metric Σi We additionally assume that
the features are uncorrelated with each other, so that Σi con-
sists only of variances, i.e. all off-diagonal elements are zero.
To specify the model we need to determine the 24 dimension
mean vector µi and the 24 dimension variance vector diag(Σi)
associated with the emitting state, and the transition probabili-
ties.

If we knew which state (i.e. chord) generated each observa-
tion in our training data, the model parameters could be directly
estimated. Hand-marked chord boundaries could provide the
necessary information, but it is extremely time-consuming to
create these files. In our case, we assume only that the chord
sequence of an entire piece is known, but treat the chord labels
of each frame as hidden values within the EM framework. This
frees the researcher from the laborious and problematic process
of manual annotation.

2.3 Expectation Maximization

The expectation maximization (EM) algorithm (Gold and Mor-
gan, 1999) is an approach that structures the statistical classi-
fier parameter estimation problem to incorporate hidden vari-
ables. We assume a joint density between the observed and
missing (hidden) variables, defining the complete-data likeli-
hood P (X,Q|Θ) whereX represents the observed feature vec-
tors, Q stands for the unknown chord labels, and Θ holds the
current model parameters. EM estimates the densities by taking
an expectation of the logarithm of the complete-data likelihood,

E[logP (X,Q|Θ)] =
∑

Q

P (Q|x,Θold)log(P (X |Q,Θ)P (Q|Θ)

(4)
This equation expresses the complete-data log likelihood as a
function of old and new parameters, Θold and Θ. At each step
the old parameters are fixed, and Θ is adjusted to maximize
logP (X,Q|Θ) in expectation. This process is iterated until the
expected improvement is no larger than some ε. EM guarantees
that the estimates will improve at each step, resulting in a locally
optimal set of parameters, though not necessarily the globally
optimal solution. Thus, the EM solution reasonably estimates a
set of parameters that maximizes the complete-data likelihood,
which implements the original MAP decision rule.

The specific application of EM to find maximum-likelihood
parameter estimates for a hidden Markov model is known as
the Baum-Welch, or forward-backward algorithm. The up-
date equations derived from maximizing equation 4 amount to
setting model parameters to the sample averages of the train-
ing features, weighted by the posterior probability of each
feature being associated with each particular hidden label,
p(qin|X,Θold,M), whereM is the model comprising the con-
straints on observations X , constructed by concatenating the
states specified in the known chord sequence into a single com-
posite HMM for each song.

2.4 Viterbi Alignment

The EM algorithm calculates the mean and variance vector val-
ues, and the transition probabilities for each chord HMM. With
these parameters defined, the model can now be used to de-
termine a chord labeling for each song. The Viterbi algorithm
(Gold and Morgan, 1999) is used to either forcibly align or
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Figure 1: System Overview

recognize these labels; in forced alignment, observations are
aligned to a composed HMM whose transitions are limited to
those dictated by a specific chord sequence, as in training i.e.
only the chord-change times are being recovered, since the
chord sequence is known. In recognition, the HMM is uncon-
strained, in that any chord may follow any other, subject only to
the Markov constraints in the trained transition matrix. We per-
form both sets of experiments to demonstrate that even when
pure recognition performance is quite poor, a reasonable ac-
curacy under forced alignments indicates that the models have
succeeded in learning the desired chord characteristics to some
extent. The output of the Viterbi algorithm is the single state-
path labeling with the highest likelihood given the model pa-
rameters. This best-path assigns a chord to every 100ms time
slice, resulting in a time-aligned song transcription.

2.5 Weighted Averaging of Rotated PCP Vectors

The outcome of the EM training is a set of model parameters
including means and variances in PCP feature space for each of
the defined chord states. These values define our initial chord
models, however, an improvement can be made by calculating a
weighted average of the models for every chord family (major,
minor, maj7 etc.) across all root chromas (A, A#, B, C, etc.).
This involves rotating the PCP vectors from each chroma until
PCP[0] is the root pitch class, computing a weighted average
across all the chromas (weighted by frequency of chord occur-
rence), then un-rotating the weighted average PCP vectors back
to their original positions to construct new, regularized models
for each chord. Thus, if f indexes across chord families and c
is the numerical offset of each chroma relative to A in quarter
tones (e.g. A �→ 0, A# �→ 2, B �→ 4 etc.), then the mean vector
for the parent model of chord family f in PCP space is

µ̄f [p] =

∑
c µf,c[(p− c) mod 24] ·Nf,c∑

cNf,c
(5)

where µf,c is the original mean vector for one specific chord
family/chroma combination, Nf,c is the number of frames as-
signed to that state in forced alignment of the training data, and
p indexes the 24 PCP bins. The rotated models then replace the
individual family/chroma state models with

¯µf,c[p] = µ̄f [(p+ c) mod 24] (6)

(Variances are similarly pooled). The motivation is that by using
values characteristic to the entire family, a derived state model
avoids overfitting its particular chord data. There is also the
advantage of increasing each individual chord’s training set to

Album Song Set
Beatles for Sale Eight days a week test

Every little thing test
I don’t want to spoil
the party

train

I’ll follow the sun train
I’m a loser train

Help Help train
I’ve just seen a face train
It’s only love train
Ticket to ride train
Yesterday train
You’re going to lose
that girl

train

You’ve got to hide
your love away

train

A Hard Day’s Night A hard day’s night train
And I love her train
Can’t buy me love train
I should’ve known
better

train

I’m happy just to
dance with you

train

If I fell train
Tell me why train
Things we said today train

Table 1: Corpus of 20 early Beatles songs used in the experi-
ments.

the union of all chord family members. The results below show
that this simple approach gave very significant improvements.

3 Implementation and Experiments

The Hidden Markov Model Toolkit (Young et al., 1997) was
used to implement our chord recognition system. Twenty songs
from three early Beatles albums were selected for our experi-
ments (see table 1). The songs were read from CD then down-
sampled and mixed into mono files at 11025 Hz sampling rate.
The chord sequences for each song were produced by mapping
the progressions from a standard book of Beatles transcriptions
(Paperback Song Series: The Beatles, 1995) to a simpler set of
chords as shown in table 2. The twenty soundfiles and their as-
sociated chord sequences comprise the input to our system. Two
songs, “Eight Days a Week” and “Every Little Thing”, were



Chord families maj, min, maj7, min7,
dom7, aug, dim

Roots A�, B�, C�, D�, E�, F�, G�,
A, B, C, D, E, F, G,
A�, B�, C�, D�, E�, F�, G�,

Examples Amaj, C�min7, G�dom7

Table 2: Definition of the 147 possible chords that can appear
as HMM states. The label “X” is given to chords not covered
by this set. In practice, only 32 labels occurred in our data.

Feature Align Recog
train18 train20 train18 train20

MFCC 27.0 20.9 5.9 16.7
14.5 23.0 7.7 19.6

MFCC D 24.1 13.1 15.8 7.6
19.9 19.7 1.5 6.9

MFCC 0 D A 13.9 11.0 2.2 3.8
9.2 12.3 1.3 2.5

PCP 26.3 41.0 10.0 23.6
46.2 53.7 18.2 26.4

PCP ROT 68.8 68.3 23.3 23.1
83.3 83.8 20.1 13.1

Table 3: Percent Frame Accuracy results. Within each row, the
first subrow refers to “Eight Days a Week” and second subrow
to “Every Little Thing”. Columns show the frame accuracy for
forced alignment and recognition, using the train18 (excluding
test cases) and train20 (including test cases) sets.

designated as the test set, and for these songs the actual chord
boundaries were hand-labeled using WaveSurfer; this provided
the ground-truth used to determine frame error rates.

We made separate HMM trainings using five distinct feature
configurations. The first three use Mel-frequency cepstral co-
efficients (MFCCs), the ubiquitous features of speech recogni-
tion, calculated using HTK We included MFCCs as a compari-
son: We did not expect them to be well suited to this task, since
these features suppress pitch information. However, MFCCs
have performed surprisingly well in some other music content
analysis tasks (Logan, 2000), so they make a good baseline. In
each case, the total model dimensions were kept at 24 to match
the number of parameters in the PCP systems; in the first case
(MFCC) we used 24 MFCCs to get a relatively fine spectral
description. Case 2 (MFCC D) used just 12 MFCCs but in-
cluded their deltas (velocities) since these are a popular addi-
tion in speech recognition. The third case (MFCC 0 D A) used
7th order MFCCs including the c0 (average log energy) term,
along with deltas and accelerations for each dimension, again
mimicking successful speech feature configurations.

The remaining two feature configurations are plain PCP vectors
(PCP) and the averaged PCP vector rotations (PCP ROT), both
in 24 dimensions. A matlab script was written to perform a
STFT of Hanning length 4096, and a subsequent PCP mapping
using reference frequency 440 Hz (A4).

We trained on the 18 songs from our dataset not designated as
test examples. We also repeated the experiments training on all
20 songs — i.e. including the test examples — to establish a
performance ceiling in the optimistic condition when the test
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Figure 3: Mean vectors for the PCP ROT average chord family
templates.

cases exactly match part of the training set.

Training begins with the uniform segmentation and chord label-
ing of every training song, using chord sequence information.
HMM state chord models were initialized with global mean and
variance values from the entire dataset (so called flat-start EM
initialization). Ideally, enough of the chord models align with
the actual realizations of the chord to allow successively more
accurate models to evolve during training iterations. Prior to
training, a single composite HMM for each song is constructed
according to the chord sequence information (see section 2.2),
which constrains the training process. EM proceeds for 13 to 15
iterations. After all the training songs have been processed, the
total set of statistics is used to re-estimate the parameters of the
individual chord models. At this point, averaged-rotated PCP
models are combined as described in section 2.5.

Lastly, the Viterbi algorithm is applied to generate either a
boundary alignment of an existing chord sequence or recog-
nize a new chord sequence. In the case of alignment, the chord
sequence file is used to generate a simple composite HMM
with allowable transitions determined by the song’s progres-
sion. Recognition must be able to accommodate any sequence
drawn from the set of training song chords. An appropriate
chord loop is derived from the chord sequence files of all train-
ing songs. The Viterbi algorithm will determine the best path in
this chord network. Each PCP frame is assigned a chord class
such that the likelihood of the entire path is maximized. The
chord-labeled frame sequence along this path is the aligned or
recognized output of the system. By comparing the automatic
chord labels with the hand-marked ground-truth labels of the
test examples, we can calculate the frame error rate.

3.1 Frame Accuracy Results

A summary of the frame accuracy results is presented in ta-
ble 3, with the alignment and recognition accuracy percentages
on each of the two test examples for the five feature configura-
tions and two training sets. We see that models trained using
the base PCP features perform better than models trained us-
ing MFCCs in all cases except one (recognition of the first test
example using MFCC D and train18). Using averaged-rotated
PCPs (PCP ROT) results in models that outperform all MFCC-
trained ones, as well as the base PCP models in all cases ex-
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Figure 2: Illustration of PCP features vectors, ground truth labels, forced alignment output, and recognition output, for a brief
segment of “Eight Days a Week”.

cept, curiously, recognition based on train20. The strength of
the PCP representation, and the model averaging approach, is
clearly demonstrated, with the PCP ROT models performing as
much a four times better than the best MFCC counterparts.

Forced alignment always outperforms recognition, as expected
since the basic chord sequence is already known in forced align-
ment which then has only to determine the boundaries, whereas
recognition has to determine the chord labels too. Comparing
the performance of train18 and train20 (i.e. testing on examples
that are distinct from, or included in, the training set), we see a
mixed effect with MFCC features. For the PCP system, testing
on the training set (train20) gives a significant increase in ac-
curacy for both alignment and recognition, indicating that these
models are able to exploit the ‘cheating’ information of getting
a preview of the test cases. By contrast, PCP ROT achieves
no benefit from training on the test set (and even does signifi-
cantly worse on recognizing “Every Little Thing”, which may
reflect some pathological case in the local maximum found by
EM). As a general rule, if including the test data in the training
set does not significantly increase performance, we can at least
be confident that the models are not overfitting the data; thus,
for PCP ROT, we could try training with more model param-
eters, such as Gaussian mixtures rather than single Gaussians,
since we have not already overfit our models to the data—even
though this is already the best-performing system overall.

3.2 Chord Confusion

Greater insight into system performance can be obtained by ex-
amining the specific kinds of errors being made in terms of mis-
recognitions of particular chords into other classes. The case we
are most interested in is recognition (rather than alignment) us-

ing weight-averaged PCP HMMs (PCP ROT), trained without
using test songs (train18). Table 4 presents the confusion ma-
trices for every frame in “Eight Days a Week”, which we label
with only 5 chords plus “X”. Notice the frequent confusion be-
tween major chords and their minor version, which differ only
by the semitone between the major and minor third intervals.
Better discrimination of these chords might be achieved by in-
creasing the system’s frequency resolution.

3.3 Model Means

Figure 3 shows the actual PCP-domain ‘signatures’ — the
pooled chord family mean vectors — learned in the PCP ROT
train18 system. While it is difficult to make any strong inter-
pretation of this plot, it is interesting to see the similarities and
differences between the different chords.

3.4 Output Example

Figure 2 shows an eight-second segment of the song “Eight
Days a Week” taken about 16 seconds into the song. The display
consists of the PCP feature vectors shown in a spectrogram-
like format. Underneath are three sets of chord labels:
the hand-marked ground truth, the labels obtained by forced
alignment, and the labels returned by recognition (using the
PCP ROT/train18 system). While this is only a small fragment,
it gives a flavor of the nature of the results obtained.

4 Future Work

4.1 Training Parameters

Our future work on this system will concentrate on the follow-
ing areas:



XIRTAMNOISUFNOC"ROJAMA"
keeWasyaDthgiE

jaM niM 7jaM 7niM 7moD guA miD

A 4 .71 . . 94 . .

bB/#A . . . . . . .

bC/B . . . . . . .

C/#B . . . . . . .

bD/#C . . . . . . .

D . 3 . . . . .

bE/#D . . . . . . .

bF/E 71 5 . . 1 . .

F/#E 1 . . . . . .

bG/#F . 9 . . . . .

G . . . . . . .

bA/#G . . . . . . .

XIRTAMNOISUFNOC"RONIMB"
keeWasyaDthgiE

jaM niM 7jaM 7niM 7moD guA miD

bC/B . 27 . . . . .

C/#B . . . . . . .

bD/#C . . . . . . .

D . 3 . . . . .

bE/#D . . . . . . .

bF/E 8 15 . 14 . . .

F/#E 3 3 . . . . .

bG/#F . 21 . 6 . . .

G 2 . . . . . .

bA/#G . . . . . . .

A . . . . 1 . .

bB/#A . 9 . . . . .

XIRTAMNOISUFNOC"ROJAMD"
keeWasyaDthgiE

jaM niM 7jaM 7niM 7moD guA miD

D 03 911 . 5 94 . .

bE/#D . . . . . . .

bF/E 81 43 . 14 . . .

F/#E 7 . . . . . .

bG/#F . 24 . 51 . . .

G . . . . . . .

bA/#G . . . . . . .

A 91 6 . . 67 . .

bB/#A . . . 25 . . .

bC/B . 02 . . . . .

C/#B . . . . . . .

bD/#C . 1 . . . . .

XIRTAMNOISUFNOC"ROJAME"
keeWasyaDthgiE

jaM niM 7jaM 7niM 7moD guA miD

bF/E 851 511 . 9 . . .

F/#E 9 . . . . . .

bG/#F . . . 11 . . .

G 3 . . . . . .

bA/#G . . . . . . .

A 9 . . . 1 . .

bB/#A . . . . . . .

bC/B 8 . . . , . .

C/#B . . . . . . .

bD/#C . 02 . . . . .

D . 41 . . . . .

bE/#D . . . . . . .

XIRTAMNOISUFNOC"ROJAMG"
keeWasyaDthgiE

jaM niM 7jaM 7niM 7moD guA miD

G 221 53 . . . . .

bA/#G . . . . . . .

A 11 . . . . . .

bB/#A . . . . . . .

bC/B . 42 . 3 . . .

C/#B . . . . . . .

bD/#C . . . . . . .

D 31 71 . 2 1 . .

bE/#D . . . . . . .

bF/E 1 401 . 62 . . .

F/#E . . . . . . .

bG/#F . 21 . . . . .

XIRTAMNOISUFNOC"DROHCX"
keeWasyaDthgiE

jaM niM 7jaM 7niM 7moD guA miD

A 91 . . . . . .

bB/#A . . . . . . .

bC/B . 12 . . . . .

C/#B . . . . . . .

bD/#C . . . . . . .

D . 53 . . . . .

bE/#D . . . . . . .

bF/E . . . . . . .

F/#E . . . . . . .

bG/#F . 1 . . . . .

G . . . . . . .

bA/#G . . . . . . .

Table 4: Confusion matrices for recognition of “Eight Days a Week”, PCP ROT, train18. Enharmonic equivalent chords have been
combined.



• More data and parameters: In section 3.1, we noted
that the PCP ROT chord family models show no signs of
overfitting, so employing more parameters, e.g. by us-
ing Gaussian mixture models rather than single Gaussians,
should achieve further accuracy improvements. Of course,
a larger and more diverse collection of training data should
also improve accuracy and applicability of the system. The
most significant obstacle to obtaining this data is finding a
reliable source for the associated chord sequences.

• Frequency Resolution: As observed from the ma-
jor/minor chord confusion, our recognition system most
likely does not have enough frequency resolution. A sim-
ple remedy is to use longer FFT windows; increasing the
Hanning length to 8192 may allow the system better to dis-
tinguish neighboring notes. This issue is particularly seri-
ous at low frequencies, when the spacing of adjacent FFT
bins becomes greater than one quarter-tone. Currently we
assign all energy in these low bins to a single chroma, but
better results might be obtained by spreading it across sev-
eral PCP dimensions in proportion to their overlap with the
FFT bin frequency range.

• Adaptive Tuning: One argument for using 24-
dimensional PCP vectors was to accommodate slight vari-
ations in tuning. Another way to help ensure that notes
do not adversely interact with the PCP bin edges would
be to estimate the precise tuning used in a particular song,
and center the PCP feature definition accordingly. This can
be accomplished by performing a much finer FFT on long
portions of the original file, determining the most intense
frequency and its corresponding pitch, and then shifting
the FFT to PCP mapping such that this frequency falls pre-
cisely in the middle of a note.

• Different Features: We chose PCP features because of
their prior success in chord classification tasks, but we are
also interested in very different kinds of features. One idea
we would like to try is looking at the autocorrelation of
subband energy envelopes at the very long lags that emerge
as the least common multiple of the different fundamental
frequencies making up a chord.

5 Conclusion

Our experiments show that HMM models trained by EM on
PCP features can successfully recognize chords in unstructured,
polyphonic, multi-timbre audio. This is a challenging instance
of extracting complex musical information from a complex in-
put signal has many practical applications, since harmonic in-
formation covers much of the character of western music. Be-
cause our system uses only the raw audio. it should be applica-
ble over a wide range of circumstances.

Although recognition accuracy is not yet sufficient to provide
usable chord transcriptions of unknown audio, the ability to find
time alignments for known chord progressions may be useful
in itself. Moreover, the minimally-supervised EM training ap-
proach means that the incorporation of large amounts of addi-
tional training data should be straightforward, since no manual
annotation is required. A larger system of this kind should result
in much more precise and successful models.

Acknowledgments

Our thanks go to the anonymous reviewers for their helpful
comments.

References

Bartsch, M. A. and Wakefield, G. H. (2001). To catch a chorus:
Using chroma-based representations for audio thumbnailing. In
Proc. IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics, Mohonk, New York.

Fujishima, T. (1999). Realtime chord recognition of musical
sound: A system using common lisp music. In Proc. ICMC,
pages 464–467, Beijing.

Gold, B. and Morgan, N. (1999). Speech and Audio Signal Pro-
cessing: Processing and Perception of Speech and Music. John
Wiley & Sons, Inc.

Logan, B. (2000). Mel frequency cepstral coefficients for music
mode ling. In Proc. Int. Symposium on Music Inform. Retriev.
(ISMIR), Plymouth.

Paperback Song Series: The Beatles (1995). Hal Leonard Cor-
poration.

Raphael, C. (2002). Automatic transcription of piano music. In
Proc. Int. Symposium on Music Inform. Retriev. (ISMIR), Paris.

Young, S., Odell, J., Ollason, D., Valtchev, V., and Woodland, P.
(1997). HTK Hidden Markov Model Toolkit. Entropic Research
Laboratories Inc., Cambridge University.


