
Effectiveness of HMM-Based Retrieval on Large Databases

Jonah Shifrin
EECS Dept, University of Michigan

110 ATL, 1101 Beal Avenue
Ann Arbor, MI 48109-2110
jshifrin@umich.edu

William Birmingham
EECS Dept, University of Michigan

110 ATL, 1101 Beal Avenue
Ann Arbor, MI 48109-2110
wpb@eecs.umich.edu

Abstract

We have investigated the performance of a hidden
Markov model QBH retrieval system on a large
musical database. The database is synthetic,
generated from statistics gleaned from our (smaller)
database of musical excerpts from various genres.
This paper reports the performance of several
variations of our retrieval system against different
types of synthetic queries on the large database,
where we can control the errors injected into the
queries. We note several trends, among the most
interesting is that as queries get longer (i.e., more
notes) the retrieval performance improves.

1 Introduction
For the past couple years, our group has been working on the
VocalSearch (Birmingham 2003) system, part of the larger
MusArt project (Birmingham, Dannenberg et al. 2001;
Birmingham 2002; Shifrin 2002). VocalSearch is a query-by-
humming (QBH) system for music search and retrieval. The
system has a database of musical pieces. Each piece in the
database is represented by a set of monophonic themes, which
are encoded as hidden Markov Models (HMMs). Each HMM
is built automatically from a single theme. Each query is
treated as an observation sequence. Similarity between a query
and a theme is assessed by determining the probability the
HMM could have generated the query. The quality of a match
between a piece and a query is given by the probability its best
matching theme generated the query. The pieces are then
ranked by match quality.
We, like most researchers in the MIR area, have evaluated our
system on relatively small databases. Our largest experiments
use a database of about 2600 themes (Shifrin 2002). Yet, small
databases pose a problem, as we anticipate that MIR system
will need to work on database sizes approaching millions of
themes in the relatively near future. Consider that
VocalSearch works with Apple’s iTunes, a popular computer-
based media player. Assume a typical pop song is roughly five
minutes long. If songs are stored as 128kbps mp3 files, a 100-

gigabyte hard drive can hold 22,365 songs. Given that PCs are
already shipping with 100-gigabyte drives, we can expect
VocalSearch will need to deal with a database of this size in
the very near future.
There are two main reasons why we have been limited to
experiments on relatively small databases. First, our system
depends on matching sung queries to themes. We can
automatically generate themes from a song encoded in MIDI;
however, the process is error prone and needs human
supervision, thus limiting the size of the database. Perhaps
more importantly, it is difficult to get a sufficiently large
number of queries to adequately cover a large
database(Bainbridge 2002; Downie 2002). Controlling for
singer variation in ability, knowledge, and so forth, makes the
experimental process long and complex..
In order to sidestep the labor-intensive steps involved in
creating and querying a large song database, we synthetically
generated both a 50,000-theme database and several
corresponding sets of 5100 queries. In this paper, we report on
the performance of our HMM-base retrieval system for this
database and query set configurations. We also report on how
varying parameters of the HMM system impact performance.

2 System Overview
In this section, we provide a brief overview of our system.
Figure 1 gives a block diagram overview of our system.

Figure 1: System Diagram

2.1 Queries

For an audio query, a singer records a .wav file using
VocalSearch’s recording program. The .wav file is transcribed
into a MIDI-based representation using a pitch tracker and
note segmenter.
Figure 2 shows a time amplitude representation of a query,
with its pitch-tracker output on piano roll, and a sequence of

Permission to make digital or hard copies of all or part of this work for
personal of classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page.  2003 The Johns Hopkins
University.

values derived from the MIDI representation (the deltaPitch,
IOI and IOIratio values).

delta pitch 2 2 0 -2 –2 2 2 –4 –1 -3 -3
IOI (100 ms units) 3 2 3 2 1 2 1 1 2 1 1
IOI ratio 1.5 .66 1.5 2 .5 2 1 1 2 1 1

C

C

Figure 2: A sung query (adapted from Shifrin, et al. (Shifrin

2002))

We define the following state model (Shifrin 2002):
• A note transition between note n and note n+1 is

described by the duple <deltaPitch, IOIratio>.
• deltaPitchn is the difference in pitch between note n and

note n+1.
• The inter onset interval (IOIn) is the difference between

the onset of notes n and n+1.
• IOIration is IOIn/IOIn+1. For the final transition,

IOIn = IOIn /durationn+1.

2.2 Targets

The targets in our database are themes, and are represented by
Markov Models (MM). A MM is a weighted automaton that
consists of:
• A set of states, S = {s1, s2, s3,…, sn}.
• A set of transition probabilities, T, where each ti,j in T

represents the probability of a transition from si to sj.
In this model, the probability of transitioning from a given
state to another state is assumed to depend only on the current
state. This is known as the Markov property.
Each state, s, in the Markov model consists of the duple
<deltaPitch, IOIratio>. Figure 3 shows a theme as a MM.
MMsare too simple for our application, as they require that
each state in the model correspond to a fully observable state
in the world. In QBH applications, this is almost never the
case, as there are many errors introduced by the singer, the
transcriber, and the segmenter (Mongeau and Sankoff 1990;
Raphael 1999; Meek and Birmingham 2002). For example, a
user (singer) may not be able to generate intervals greater than
a perfect 5th, so that, from the system’s perspective, it is
impossible to distinguish between a minor 6th and a minor 7th.
Thus, we need to account for these various types of errors by
extending the MM to a hidden Markov Model, or HMM. The
HMM allows us a probabilistic map of observed states to
states internal to the model (hidden states).

1
.5

.33

Delta pitch 2 2 1 2 -2 -1 -2 -2
IOI 1 1 1 1 1 1 1 1
IOI ratio 1 1 1 1 1 1 1 1
State α α β α χ δ χ χ

1

.33

.33 .5

α

β

χ

δ
.7

.1

.1

.1
Figure 3: Markov model for a scalar passage (adapted from

Shifrin, et al. (Shifrin 2002))

A model that explicitly maintains a probability distribution
over the set of possible observations for each state is called a
hidden Markov model (HMM). More formally, an HMM
requires two properties in addition to the properties required
for a standard Markov model:
• A set of possible observations, O={o1, o2, o3,…, on}.
• A probability distribution over the set of observations for

each state in S.
In our approach, a query is a sequence of observations. Each
observation is a note-transition duple, <deltaPitch, IOIratio>.
Musical themes are represented as hidden Markov models
whose states also corresponds to note-transition duples.
Thus P(O|S) is the P(note transitionO | note transitionS). This
probability requires that both the observed deltaPitch and
IOIratio must be computed in terms of the note transition
probability. deltaPitch and IOIratio are assumed to be
conditionally independent.
So, P(note transitionO | note transitions) =
P(deltaPitchO|deltaPitchS)*P(IOIratioO|deltaPitchS).
If one assumes pitch quantized at the half step and that a
singer will jump by no more than an octave between notes,
there are 25 possible deltaPitch values. Our
P(deltaPitchO|deltaPitchS) table is based on the data from a
study (Pardo and Birmingham 2003) where singers tried to
match a pitch interval by singing it after hearing it. The
P(IOIratioO|IOIratioS) is based on the ratio of two IOIratios.
Where, the ratio of IOIratios is the IOIratioO/IOIratioS. This
provides a ratio as to how close the observation is to the
(hidden) state. Mapped in log space into 27 buckets in a
normal distribution it provides our table for
P(IOIratioO|IOIratioS).

2.3 Matcher

Using the Forward algorithm, our matcher returns the
probability that the HMM generated the observation sequence.
(Rabiner and Juang 1993; Durbin, Eddy et al. 1998) The
Forward algorithm sums up the probability of traversing all
paths through the HMM.

3 Database Generation
The synthetic database that we generated follows the qualities
of our existing theme database, which is based on a collection
of Beatles songs. To generate the synthetic database, we
analyzed the properties of a Beatles theme database that we

have experimented with for a year. The Beatles database is a
MIDI collection of 260 Beatles MIDI songs, which were
processed into a database of 284 themes.
Most of the Beatles songs were modeled with one theme that
encapsulated all hooks or riffs. However, a few of the songs
had two or three distinct themes.
We analyzed three properties of the database, deltaPitch,
IOIratio and length (of the themes). For deltaPitch, we
examined the distribution of the deltaPitch’s in the database.
Any interval jump greater than +12 semitones or less than –12
semitones was quantized to +12 and –12 semitones,
respectively. Thus, there were 25 total possible deltaPitch
values. In the Beatles database, there were 12,379 pitch
intervals. Figure 4 represents the deltaPitch distribution.

Fraction of Database by deltaPitch

0

0.05

0.1

0.15

0.2

0.25

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

Figure 4: deltaPitch distribution in Beatles database

Fraction of Database by ln(IOIratio)

0

0.05

0.1

0.15

0.2

0.25

0.3

-2.2 -1.8 -1.4 -1 -0.6 -0.2 0.2 0.6 1 1.4 1.8 2.2

Figure 5: IOIratio distribution in Beatles database

Similarly, the Beatles database contained 12,379 IOIratios.
We quantized the IOIratios into 23 bins distributed on a
logarithmic scale. We chose logarithmic scale for a uniform
distribution. The smallest IOIratio bin is ln(-2.2) and the
largest IOIratio bin is ln(2.2), with bins spaced at every ln(.2).
Figure 5 represents the IOIratio distribution.

Finally, we created a theme-length distribution based on the
number of notes contained by the themes in the Beatles
database The median theme length was 40 notes, with a
standard deviation of 19.91 notes.
We created the database by using our observed distributions
for deltaPitch, IOIratio and theme length to randomly generate
each synthetic theme. Our resulting synthetic database
contained 50,000 themes. This synthetic theme database
corresponds to a database of roughly 22,000 songs assuming
an average of 2.27 themes per song (which is typical for our
databases).

4 Synthetic Query Generation
We generated 5100 queries from different targets in the
database for each set. These queries were evenly distributed
by length. One hundred queries were created ranging in length
from five notes to 55 notes. This range represents bounds for
the longest and shortest queries we observed in experiments
with VocalSearch.
The synthetic queries consist of a sequence of notes. Each
note has a pitch, an onset time and duration. The synthetic
queries are equivalent to sung queries that have been pitch
tracked and segmented. Queries were varied for length to
determine if the matcher’s performance is related to the
query’s length. If a query contains too few notes, it may not
have enough information to distinguish its target from the
other targets in the database; if the query were sufficiently
long, it might not match our themes, which may be shorter
than the query.

4.1 Perfect Queries

A perfect query is an exact excerpt from a target in the
database. The purpose of presenting perfect queries to the
matchers is to create a baseline statistic for testing our system.
If our matcher cannot consistently rank perfect queries of
length l first overall, then it cannot be expected to rank an
imperfect query of length l first.

4.2 Imperfect Queries

An imperfect query simulates the type of query we expect to
be input into our system. The typical user makes a substantial
number of errors when singing, as reflected in deltaPitch and
IOIratio ratios. In addition, pitch trackers and segmenters
introduce errors.(McNab, Smith et al. 1996; Madden, Smith et
al. 2001; Meek and Birmingham 2002)
An assumption we make is that we have a perfect probabilistic
model of singer and transcription error. What we mean is that,
given our statistics about singer error, we will only generate
queries consistent with those statistics. We note that it is
entirely possible that these statistics are deficient, which
would mean that our synthetic queries are not representative
of real-world queries.
Thus, our imperfect query experiments represent a best-case
simulation. If we cannot successfully perform retrieval on a
matcher that uses an exact observation probability distribution
on a large database, then that matcher could not be expected to
successfully retrieve on large databases. If, however, a
matcher can successfully perform retrieval with our query
approximation, it indicates that the matcher is capable of
performing retrieval, provided it has an accurate observation
probability distribution.
In order to generate a perfect query, we first select a length l
subsequence of a target in the database. Then, we transform
the selected portion of the target into a sequence, S, of
<deltaPitch, IOIratio> duples.
An imperfect query is created as follows. For each state si in S,
we generate an observation oi based on the same probability
tables used to calculate P(O|S) in the matcher.
As an example of how the queries were generated, say that Sm
=α, and that P(β|α) = 0.7, P(χ|α)= 0.3, the observation

generated Om, would have a probability of 0.7 of being β and
a probability of 0.3 of being χ.
This set of imperfect queries assumes users introduce only
cumulative error. Cumulative error means that the singers shift
their pitch and rhythm baseline as they go. For example,
consider a target with deltaPitch <+2,-2> and an IOIratio of
<1,1>. If the first observed deltaPitch in the query is +4, using
a cumulative error distribution, there is the same likelihood
that the second observed deltaPitch would be -2 as it would
have been if the first observed deltaPitch had been a +2.
Some research (Meek and Birmingham 2002; Pollastri 2002)
suggests that local errors are more common than cumulative
errors. For a local error, if the first observed deltaPitch was a
+4, the singer would be more likely to query a deltaPitch of -4
for the second observation to keep their initial baseline. Figure
6 demonstrates the difference between local errors and
cumulative errors. Currently, the MIR community is divided
on whether cumulative or local errors are more prevalent.

Target on Piano Roll
deltaPitch: +2 -2

Query with Cumulative Error
deltaPitch: +4 -2

Query with Local Error
deltaPitch: +4 -4

Figure 6: Example of cumulative and local errors

The HMM-based retrieval system used in the experiments
presented in this paper was designed under the assumption
that singers shift their baseline as they go, introducing
cumulative errors. Thus, the imperfect queries were created
under the assumption of only cumulative errors.

4.3 Query Insertions and Deletions

One common aspect of real-world queries is insertions and
deletions. Persons and pitch trackers/segmenters commonly
insert and delete notes in queries, relative to the targets in our
database. According to experiments done by Meek on a set of
80 folk-tune queries with lyrics, the P(“no edit”) = .81, where
no edit means that there was no insertion or deletion.
P(“insertion”) = 0.06, and P(“deletion”) = 0.13. Thus, we
created a query set modeled after the imperfect queries, except
it also had insertions and deletions.
For note insertion, a note n with duration d and pitch p, is
divided into notes n1 and n2. Both n1 and n2 have duration d/2
and pitch p. Thus, a note is added, but the rhythm is preserved.
For a deletion, consider the note n2, which is preceded by note
n1 with note onset time o1 and pitch p1, and followed by note
n3 with note onset time o3. If note n2 is deleted, note n1 still
has pitch p1 and has duration o3-o1. So, the preceding note is
lengthened so it “covers” the duration of the skipped note. It is
worth noting that since our representation is dependant only
on the interOnsetInterval it makes no difference whether we

extend note n1 until the onset of n3 or simply delete note n3.
Figure 7 gives an example of an insertion and a deletion.

Insertion on Second Note

Deletion on Second Note Query on Piano Roll

Figure 7: Example of Insertions and Deletions

While the set of imperfect queries is intended to show whether
retrieval is possible on a large database if the matcher’s
topology reflects the properties of the queries, the dataset of
insertions and deletions is meant to reflect real-queries. This
dataset allows us to examine our system’s performance on
queries that do not directly conform to the HMM topology
(i.e., the HMM does not directly model note deletions and
insertions). Queries with insertions and deletions allows us to
determine the sensitivity to the types of errors we expect to
see in real queries.

5 Experimental Results
In this section, we present the results of our experiments. For
the experiment sets, we used three different types of HMM
matchers. A matcher that only considers the observed pitch, a
matcher that only considers the observed duration, and a
matcher that considers both the observed pitch and duration.
Each matcher was tested against three sets of 5100 queries.
The query sets were perfect queries, imperfect queries, and
imperfect queries with insertions and deletions. For each
query, the ranking of the target that generated it in our
database was recorded. Each query could rank between one
and 50,000.
During each set of experiments with a matcher, we recorded
both the Mean Reciprocal Rank (MRR)and the median rank of
all queries in a set of length l. The formula for the MRR of N

queries with rank ri is:
1

1/ 1/
N

i
i

N r
=
∑ . Since each set of

queries contained 100 queries of length l, with l ranging from
five to 55, each experiment with a query set returned 51 MRR
values.

5.1 Results of Pitch and Duration Matcher

The MRR and median results by length of the matcher that
considers pitch and duration for all three query experiments
are given in Figure 8. The median results are on a logarithmic
scale.

 MRR Pitch
and Duration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45 50 55

Imperfect Queries
Perfect Queries
Insertions and Deletions

 Pitch and Duration

Median

1

10

100

1000

10000

100000

5 10 15 20 25 30 35 40 45 50 55

Imperfect Queries
Perfect Queries
Insertions and Deletions

Figure 8: MRR value vs. query length for all three query-types

on the pitch and duration matcher

In the two experiments without insertions and deletions, the
matcher clearly benefits from longer queries. While these
effects are less pronounced on the query set containing
insertions and deletions, the results still suggest this trend.
Longer queries provide the matcher more information,
increasing the likelihood of distinguishing the intended target
from other targets.
Longer insertion and deletion queries do not necessarily
improve retrieval performance. Due to the topology of our
model, an insertion or deletion causes the path traversed by
the Forward algorithm to be split into two paths through the
target. These disjoint sub-paths each will have a lower
probability then a “full-length” path. The overall effect of the
disjoint paths is to degrade a target’s score, and thereby
decrease the information benefit of longer queries.

5.2 Results of Matcher Using Pitch Only

The MRR and well as the median results by length for the
matcher that only considers pitch are displayed in Figure 9.
The median results are displayed on a logarithmic scale.

MRR Pitch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45 50 55

Imperfect Queries
Perfect Queries
Insertions and Deletions

Pitch Median
1

10

100

1000

10000

100000

5 10 15 20 25 30 35 40 45 50 55

Imperfect Queries
Perfect Queries
Insertions and Deletions

Figure 9: MRR and mean value vs. query length for all three

query types on the pitch matcher

As was the case for pitch and duration experiments, the longer
the queries, the better the results. The slightly worse
performance on the imperfect and perfect query experiments
on the matcher that uses only pitch, as opposed to the matcher
that uses both pitch and duration shows the importance of the
duration information.
There is even more significant degradation on the performance
of the insertion and deletion query set on the matcher that only
considers pitch, compared to the matcher that considers both
pitch and duration. Since the matcher is only comparing the
deltaPitchs of the observation and the targets, as insertions and
deletions are introduced there is a greater likelihood that sub-
path’s of the other targets in the database will match the query
then there is in the case of a matcher that compared both the
pitch and duration.

5.3 Results of Matcher that Uses Duration Only

The MRR and median results by length for the matcher that
only considers duration are given in Figure 10. The median
results are displayed on a logarithmic scale.

 MRR Duartion

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45 50 55

Imperfect Queries
Perfect Queries
Insertions and Deletions

Duration Median

1

10

100

1000

10000

100000

5 10 15 20 25 30 35 40 45 50 55

Imperfect Queries
Perfect Queries
Insertions and Deletions

Figure 10: MRR and mean value vs. query length for all three

query types on the duration matcher

The pitch-only matcher outperforms the duration-only matcher
for all three query sets because of our implementation. Pitch
contains more information about a song than duration. The
pitch data is used to compare the actual deltaPitch of an
observation and a target, while the duration data is used to
compare the ratio of IOIratios The ratio of IOIratios is merely
a measure of the similarity of durations, and it contains no real
indication of rhythm: IOratio models tempo variation well. In
cases where rhythm is a critical determining feature for a
query, IOratio is not a good measure.
There is significant performance degradation on the query set
with insertions and deletions for the duration-only matcher
compared to the pitch-only matcher. Since the duration
matcher considers less information, there is an even greater
chance traversing the sub-paths of the different targets in the
database with a high probability. Since the duration-only
matcher traverses so many paths with a high probability when
queries contain insertions and deletions, query length has a
miniscule effect on performance.

6 Summary and Conclusions
There are several trends apparent from the experimental data.
The first trend is that longer queries have a positive effect on
retrieval performance, which is as we expected. As the size of
a database grows, we expect that this effect will be even more
pronounced. Moreover, we expect these results to generalize
across retrieval algorithms; in other words, we believe that the
“query-length” effect is not dependent on our particular HMM
topology, but will extend to string matchers, different HMM
topologies, and so forth.
The one caveat is that insertions and deletions mitigate the
“query-length” effect. We believe that this mitigation is more
an artifact of our particular retrieval method. We are looking

at ways around this problem, such as using a different
algorithm for ranking (e.g., Viterbi) and modifying our model
topology.
One possible topological improvement would be to extend our
model to include insertion and deletion states. This would
allow the observation to match against a longer path in the
target, and the subsequent matching of other target’s sub-
strings would not have as dramatic an effect. The HMM
architecture is easily modeled to include insertions and
deletions (Durbin, Eddy et al. 1998). Thus, we would no
longer have problem of traversing disjoint sub-paths each time
an insertion or deletion is encountered. A potential drawback
of this approach is that search time will increase significantly
when the topology admits more paths.
 The second trend is that all the experiments show a saturation
point, where retrieval performance reaches a maximum with
fairly well-defined inflection point. We were expecting more
gradual performance improvement without a saturation point.
The shape of these curves gives us guidance about the
accuracy of our retrieval system. For example, on relatively
short queries (i.e., to the “left” of the inflection point), we
expect that ranking will not be very accurate. We are looking
at ways to model accurately and possibly report it as a
confidence factor to the user.
The experiments suggest changing our current duration model,
particularly to one that more accurately represents rhythm.
The most encouraging result from these experiments is the
performance of the imperfect queries. Our system successfully
retrieved using the set of imperfect queries on the large
synthetic database. This shows both the importance of
obtaining an accurate observation model and that retrieval is
possible on large databases. In future work, we plan to have a
training mode for our system to create an accurate observation
model specific to an individual. Accurately trained and
modeled QBH HMMs systems can accurately perform
retrieval on large music databases, and have the potential to be
used for real world applications.
In addition, we intend to experiment with large datasets of
queries collected from singers. We plan to gather aggregate
statistics of the same type as did for the research presented
here. We also plan to follow the same experimental plan
evaluating our system.

Acknowledgements

We gratefully acknowledge the support of the National
Science Foundation under grant IIS-0085945. The opinions in
this paper are solely those of the authors and do not
necessarily reflect the opinions of the funding agencies.
We would also like to thank Bryan Pardo for many detailed
comments on this paper, and Colin Meek for many helpful
suggestions.

References

Bainbridge, D., J.R. McPherson, S.J. Cunningham (2002).
Forming a corpus of voice queries for music
information retrieval: a pilot study. ISMIR-2002,
Paris, France.

Birmingham, W., Bryan Pardo, Colin Meek, Jonah Shifrin,
(2002). "The MusArt Music-Retrieval System: An
Overview." D-Lib Magazine.

Birmingham, W., Colin Meek, Kevin O’Malley, Bryan Pardo,
Jonah Shifrin (2003). "Managing a Personal Music
Library." Dr. Dobbs Journal Vol 28(9), September,
2003..

Birmingham, W. P., R. B. Dannenberg, et al. (2001).
MUSART: Music Retrieval Via Aural Queries.
International Symposium on Music Information
Retrieval, Bloomington, Indiana.

Downie, S. J., S.J. Cunningham (2002). Toward a theory of
music information retrieval queries: System design
implications. ISMIR-2002, Paris, France.

Durbin, R., S. Eddy, et al. (1998). Biological sequence
analysis, Cambridge University Press.

Madden, T., R. B. Smith, et al. (2001). Preparation for
Interactive Live Computer Performance in
Collaboration with a Symphony Orchestra.
Proceedings of the 2001 International Computer
Music Conference, Havana, International Computer
Music Association.

McNab, R. J., L. A. Smith, et al. (1996). Towards the digital
music library: Tune retrieval from acoustic input.
Proceedings of Digital Libraries '96, ACM.

Meek, C. and W. P. Birmingham (2002). Johnny Can't Sing: A
Comprehensive Error Model for Sung Music
Queries. ISMIR 2002, Paris, France.

Mongeau, M. and D. Sankoff (1990). Comparison of Musical
Sequences. Melodic Similarity Concepts, Procedures,
and Applications. W. Hewlett and E. Selfridge-Field.
Cambridge, MIT Press. 11.

Pardo, B. and W. P. Birmngham(2003). Name that Tune: A
Pilot Studying in Finding a Melody from a Sung
Query To Appear in JASIST.

Pollastri, E. (2002). Some considerations about processing
singing voice for music retrieval. ISMIR-2002, Paris,
France.

Rabiner, L. and B.-H. Juang (1993). Fundamentals of Speech
Recognition. Englewood Cliffs, NJ, Prentice Hall
Signal.

Raphael, C. (1999). "Automatic Segmentation of Acoustic
Musical Signals Using Hidden Markov Models."
IEEE Transactions on PAMI 21(4): 360-370.

Shifrin, J., Bryan Pardo, Colin Meek, William Birmingham
(2002). HMM-Based Musical Query Retrieval. ACM
International Joint Conference on Digital Libraries
(JCDL), ACM.

