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Abstract 

We have investigated the performance of a hidden 
Markov model QBH retrieval system on a large 
musical database. The database is synthetic, 
generated from statistics gleaned from our (smaller) 
database of musical excerpts from various genres. 
This paper reports the performance of several 
variations of our retrieval system against different 
types of synthetic queries on the large database, 
where we can control the errors injected into the 
queries. We note several trends, among the most 
interesting is that as queries get longer (i.e., more 
notes) the retrieval performance improves. 

1 Introduction 
For the past couple years, our group has been working on the 
VocalSearch (Birmingham 2003) system, part of the larger 
MusArt project (Birmingham, Dannenberg et al. 2001; 
Birmingham 2002; Shifrin 2002). VocalSearch is a query-by-
humming (QBH) system for music search and retrieval. The 
system has a database of musical pieces. Each piece in the 
database is represented by a set of monophonic themes, which 
are encoded as hidden Markov Models (HMMs). Each HMM 
is built automatically from a single theme. Each query is 
treated as an observation sequence. Similarity between a query 
and a theme is assessed by determining the probability the 
HMM could have generated the query. The quality of a match 
between a piece and a query is given by the probability its best 
matching theme generated the query. The pieces are then 
ranked by match quality. 
We, like most researchers in the MIR area, have evaluated our 
system on relatively small databases. Our largest experiments 
use a database of about 2600 themes (Shifrin 2002). Yet, small 
databases pose a problem, as we anticipate that MIR system 
will need to work on database sizes approaching millions of 
themes in the relatively near future. Consider that 
VocalSearch works with Apple’s iTunes, a popular computer-
based media player. Assume a typical pop song is roughly five 
minutes long. If songs are stored as 128kbps mp3 files, a 100-

gigabyte hard drive can hold 22,365 songs. Given that PCs are 
already shipping with 100-gigabyte drives, we can expect 
VocalSearch will need to deal with a database of this size in 
the very near future. 
There are two main reasons why we have been limited to 
experiments on relatively small databases. First, our system 
depends on matching sung queries to themes. We can 
automatically generate themes from a song encoded in MIDI; 
however, the process is error prone and needs human 
supervision, thus limiting the size of the database. Perhaps 
more importantly, it is difficult to get a sufficiently large 
number of queries to adequately cover a large 
database(Bainbridge 2002; Downie 2002). Controlling for 
singer variation in ability, knowledge, and so forth, makes the 
experimental process long and complex.. 
In order to sidestep the labor-intensive steps involved in 
creating and querying a large song database, we synthetically 
generated both a 50,000-theme database and several 
corresponding sets of 5100 queries. In this paper, we report on 
the performance of our HMM-base retrieval system for this 
database and query set configurations. We also report on how 
varying parameters of the HMM system impact performance. 

2 System Overview 
In this section, we provide a brief overview of our system. 
Figure 1 gives a block diagram overview of our system. 

 
Figure 1: System Diagram 

2.1 Queries 

For an audio query, a singer records a .wav file using 
VocalSearch’s recording program. The .wav file is transcribed 
into a MIDI-based representation using a pitch tracker and 
note segmenter. 
Figure 2 shows a time amplitude representation of a query, 
with its pitch-tracker output on piano roll, and a sequence of 
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values derived from the MIDI representation (the deltaPitch, 
IOI and IOIratio values). 
 

delta pitch           2    2        0   -2 –2    2  2 –4   –1 -3 -3  
IOI (100 ms units)    3    2        3    2  1    2  1  1    2  1  1 
IOI ratio             1.5  .66      1.5  2  .5   2  1  1    2  1  1    

C

C 

 
Figure 2: A sung query (adapted from Shifrin, et al. (Shifrin 

2002)) 

We define the following state model (Shifrin 2002): 
• A note transition between note n and note n+1 is 

described by the duple <deltaPitch, IOIratio>.  
• deltaPitchn is the difference in pitch between note n and 

note n+1. 
• The inter onset interval (IOIn) is the difference between 

the onset of notes n and n+1. 
• IOIration is IOIn/IOIn+1. For the final transition, 

IOIn = IOIn /durationn+1. 

2.2 Targets 

The targets in our database are themes, and are represented by 
Markov Models (MM). A MM is a weighted automaton that 
consists of: 
• A set of states, S = {s1, s2, s3,…, sn}. 
• A set of transition probabilities, T, where each ti,j in T 

represents the probability of a transition from si to sj. 
In this model, the probability of transitioning from a given 
state to another state is assumed to depend only on the current 
state. This is known as the Markov property. 
Each state, s, in the Markov model consists of the duple 
<deltaPitch, IOIratio>. Figure 3 shows a theme as a MM. 
MMsare too simple for our application, as they require that 
each state in the model correspond to a fully observable state 
in the world. In QBH applications, this is almost never the 
case, as there are many errors introduced by the singer, the 
transcriber, and the segmenter (Mongeau and Sankoff 1990; 
Raphael 1999; Meek and Birmingham 2002). For example, a 
user (singer) may not be able to generate intervals greater than 
a perfect 5th, so that, from the system’s perspective, it is 
impossible to distinguish between a minor 6th and a minor 7th. 
Thus, we need to account for these various types of errors by 
extending the MM to a hidden Markov Model, or HMM. The 
HMM allows us a probabilistic map of observed states to 
states internal to the model (hidden states). 
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Delta pitch      2   2   1   2   -2  -1   -2   -2 
IOI              1   1   1   1    1   1    1    1 
IOI ratio        1   1   1   1    1   1    1    1 
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Figure 3: Markov model for a scalar passage  (adapted from 

Shifrin, et al. (Shifrin 2002)) 

A model that explicitly maintains a probability distribution 
over the set of possible observations for each state is called a 
hidden Markov model (HMM). More formally, an HMM 
requires two properties in addition to the properties required 
for a standard Markov model: 
• A set of possible observations, O={o1, o2, o3,…, on}. 
• A probability distribution over the set of observations for 

each state in S. 
In our approach, a query is a sequence of observations. Each 
observation is a note-transition duple, <deltaPitch, IOIratio>. 
Musical themes are represented as hidden Markov models 
whose states also corresponds to note-transition duples. 
Thus P(O|S) is the P(note transitionO | note transitionS). This 
probability requires that both the observed deltaPitch and 
IOIratio must be computed in terms of the note transition 
probability. deltaPitch and IOIratio are assumed to be 
conditionally independent.  
So, P(note transitionO | note transitions) = 
P(deltaPitchO|deltaPitchS)*P(IOIratioO|deltaPitchS).  
If one assumes pitch quantized at the half step and that a 
singer will jump by no more than an octave between notes, 
there are 25 possible deltaPitch values. Our 
P(deltaPitchO|deltaPitchS) table is based on the data from a 
study (Pardo and Birmingham 2003)  where singers tried to 
match a pitch interval by singing it after hearing it. The 
P(IOIratioO|IOIratioS) is based on the ratio of two IOIratios. 
Where, the ratio of IOIratios is the IOIratioO/IOIratioS. This 
provides a ratio as to how close the observation is to the 
(hidden) state. Mapped in log space into 27 buckets in a 
normal distribution it provides our table for 
P(IOIratioO|IOIratioS). 

2.3 Matcher 

Using the Forward algorithm, our matcher returns the 
probability that the HMM generated the observation sequence. 
(Rabiner and Juang 1993; Durbin, Eddy et al. 1998) The 
Forward algorithm sums up the probability of traversing all 
paths through the HMM. 

3 Database Generation 
The synthetic database that we generated follows the qualities 
of our existing theme database, which is based on a collection 
of Beatles songs. To generate the synthetic database, we 
analyzed the properties of a Beatles theme database that we 



have experimented with for a year. The Beatles database is a 
MIDI collection of 260 Beatles MIDI songs, which were 
processed into a database of 284 themes.  
Most of the Beatles songs were modeled with one theme that 
encapsulated all hooks or riffs. However, a few of the songs 
had two or three distinct themes. 
We analyzed three properties of the database, deltaPitch, 
IOIratio and length (of the themes). For deltaPitch, we 
examined the distribution of the deltaPitch’s in the database. 
Any interval jump greater than +12 semitones or less than –12 
semitones was quantized to +12 and –12 semitones, 
respectively. Thus, there were 25 total possible deltaPitch 
values. In the Beatles database, there were 12,379 pitch 
intervals. Figure 4 represents the deltaPitch distribution.  
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Figure 4: deltaPitch distribution in Beatles database                                             
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Figure 5: IOIratio distribution in Beatles database 

Similarly, the Beatles database contained 12,379 IOIratios. 
We quantized the IOIratios into 23 bins distributed on a 
logarithmic scale. We chose logarithmic scale for a uniform 
distribution. The smallest IOIratio bin is ln(-2.2) and the 
largest IOIratio bin is ln(2.2), with bins spaced at every ln(.2). 
Figure 5 represents the IOIratio distribution. 

Finally, we created a theme-length distribution based on the 
number of notes contained by the themes in the Beatles 
database The median theme length was 40 notes, with a 
standard deviation of 19.91 notes. 
We created the database by using our observed distributions 
for deltaPitch, IOIratio and theme length to randomly generate 
each synthetic theme. Our resulting synthetic database 
contained 50,000 themes. This synthetic theme database 
corresponds to a database of roughly 22,000 songs assuming 
an average of 2.27 themes per song (which is typical for our 
databases). 

4 Synthetic Query Generation 
We generated 5100 queries from different targets in the 
database for each set. These queries were evenly distributed 
by length. One hundred queries were created ranging in length 
from five notes to 55 notes. This range represents bounds for 
the longest and shortest queries we observed in experiments 
with VocalSearch.  
The synthetic queries consist of a sequence of notes. Each 
note has a pitch, an onset time and duration. The synthetic 
queries are equivalent to sung queries that have been pitch 
tracked and segmented. Queries were varied for length to 
determine if the matcher’s performance is related to the 
query’s length. If a query contains too few notes, it may not 
have enough information to distinguish its target from the 
other targets in the database; if the query were sufficiently 
long, it might not match our themes, which may be shorter 
than the query. 

4.1 Perfect Queries 

A perfect query is an exact excerpt from a target in the 
database. The purpose of presenting perfect queries to the 
matchers is to create a baseline statistic for testing our system. 
If our matcher cannot consistently rank perfect queries of 
length l first overall, then it cannot be expected to rank an 
imperfect query of length l first. 

4.2 Imperfect Queries 

An imperfect query simulates the type of query we expect to 
be input into our system. The typical user makes a substantial 
number of errors when singing, as reflected in deltaPitch and 
IOIratio ratios. In addition, pitch trackers and segmenters 
introduce errors.(McNab, Smith et al. 1996; Madden, Smith et 
al. 2001; Meek and Birmingham 2002) 
An assumption we make is that we have a perfect probabilistic 
model of singer and transcription error. What we mean is that, 
given our statistics about singer error, we will only generate 
queries consistent with those statistics. We note that it is 
entirely possible that these statistics are deficient, which 
would mean that our synthetic queries are not representative 
of real-world queries.  
Thus, our imperfect query experiments represent a best-case 
simulation. If we cannot successfully perform retrieval on a 
matcher that uses an exact observation probability distribution 
on a large database, then that matcher could not be expected to 
successfully retrieve on large databases. If, however, a 
matcher can successfully perform retrieval with our query 
approximation, it indicates that the matcher is capable of 
performing retrieval, provided it has an accurate observation 
probability distribution.  
In order to generate a perfect query, we first select a length l 
subsequence of a target in the database. Then, we transform 
the selected portion of the target into a sequence, S, of 
<deltaPitch, IOIratio> duples.  
An imperfect query is created as follows. For each state si in S, 
we generate an observation oi based on the same probability 
tables used to calculate P(O|S) in the matcher.  
As an example of how the queries were generated, say that Sm 
=α, and that P(β|α) = 0.7, P(χ|α)= 0.3, the observation 



generated Om, would have a probability of 0.7 of being β and 
a probability of 0.3 of being χ. 
This set of imperfect queries assumes users introduce only 
cumulative error. Cumulative error means that the singers shift 
their pitch and rhythm baseline as they go. For example, 
consider a target with deltaPitch <+2,-2> and an IOIratio of 
<1,1>. If the first observed deltaPitch in the query is +4, using 
a cumulative error distribution, there is the same likelihood 
that the second observed deltaPitch would be -2 as it would 
have been if the first observed deltaPitch had been a +2.  
Some research (Meek and Birmingham 2002; Pollastri 2002) 
suggests that local errors are more common than cumulative 
errors. For a local error, if the first observed deltaPitch was a 
+4, the singer would be more likely to query a deltaPitch of -4 
for the second observation to keep their initial baseline. Figure 
6 demonstrates the difference between local errors and 
cumulative errors. Currently, the MIR community is divided 
on whether cumulative or local errors are more prevalent. 

 

Target on Piano Roll 
deltaPitch:     +2       -2 

Query with Cumulative Error
deltaPitch:     +4       -2 

Query with Local Error 
deltaPitch:     +4       -4 

 
Figure 6: Example of cumulative and local errors 

The HMM-based retrieval system used in the experiments 
presented in this paper was designed under the assumption 
that singers shift their baseline as they go, introducing 
cumulative errors. Thus, the imperfect queries were created 
under the assumption of only cumulative errors. 

4.3 Query Insertions and Deletions 

One common aspect of real-world queries is insertions and 
deletions. Persons and pitch trackers/segmenters commonly 
insert and delete notes in queries, relative to the targets in our 
database. According to experiments done by Meek on a set of 
80 folk-tune queries with lyrics, the P(“no edit”) = .81, where 
no edit means that there was no insertion or deletion. 
P(“insertion”) = 0.06, and P(“deletion”) = 0.13. Thus, we 
created a query set modeled after the imperfect queries, except 
it also had insertions and deletions. 
For note insertion, a note n with duration d and pitch p, is 
divided into notes n1 and n2. Both n1 and n2 have duration d/2 
and pitch p. Thus, a note is added, but the rhythm is preserved.  
For a deletion, consider the note n2, which is preceded by note 
n1 with note onset time o1 and pitch p1, and followed by note 
n3 with note onset time o3. If note n2 is deleted, note n1 still 
has pitch p1 and has duration o3-o1. So, the preceding note is 
lengthened so it “covers” the duration of the skipped note. It is 
worth noting that since our representation is dependant only 
on the interOnsetInterval it makes no difference whether we 

extend note n1 until the onset of n3 or simply delete note n3. 
Figure 7 gives an example of an insertion and a deletion.  

Insertion on Second Note 

Deletion on Second Note Query on Piano Roll 

 
Figure 7: Example of Insertions and Deletions 

While the set of imperfect queries is intended to show whether 
retrieval is possible on a large database if the matcher’s 
topology reflects the properties of the queries, the dataset of 
insertions and deletions is meant to reflect real-queries. This 
dataset allows us to examine our system’s performance on 
queries that do not directly conform to the HMM topology 
(i.e., the HMM does not directly model note deletions and 
insertions). Queries with insertions and deletions allows us to  
determine the sensitivity to the types of errors we expect to 
see in real queries. 

5 Experimental Results 
In this section, we present the results of our experiments. For 
the experiment sets, we used three different types of HMM 
matchers. A matcher that only considers the observed pitch, a 
matcher that only considers the observed duration, and a 
matcher that considers both the observed pitch and duration.  
Each matcher was tested against three sets of 5100 queries. 
The query sets were perfect queries, imperfect queries, and 
imperfect queries with insertions and deletions. For each 
query, the ranking of the target that generated it in our 
database was recorded. Each query could rank between one 
and 50,000. 
During each set of experiments with a matcher, we recorded 
both the Mean Reciprocal Rank (MRR)and the median rank of 
all queries in a set of length l. The formula for the MRR of N 

queries with rank ri is: 
1

1/ 1/
N

i
i

N r
=
∑ . Since each set of 

queries contained 100 queries of length l, with l ranging from 
five to 55, each experiment with a query set returned 51 MRR 
values. 

5.1 Results of Pitch and Duration Matcher 

The MRR and median results by length of the matcher that 
considers pitch and duration for all three query experiments 
are given in Figure 8. The median results are on a logarithmic 
scale. 
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Figure 8: MRR value vs. query length for all three query-types 

on the pitch and duration matcher 

In the two experiments without insertions and deletions, the 
matcher clearly benefits from longer queries. While these 
effects are less pronounced on the query set containing 
insertions and deletions, the results still suggest this trend. 
Longer queries provide the matcher more information, 
increasing the likelihood of distinguishing the intended target 
from other targets. 
Longer insertion and deletion queries do not necessarily 
improve retrieval performance. Due to the topology of our 
model, an insertion or deletion causes the path traversed by 
the Forward algorithm to be split into two paths through the 
target. These disjoint sub-paths each will have a lower 
probability then a “full-length” path. The overall effect of the 
disjoint paths is to degrade a target’s score, and thereby 
decrease the information benefit of longer queries.  

5.2 Results of Matcher Using Pitch Only 

The MRR and well as the median results by length for the 
matcher that only considers pitch are displayed in Figure 9. 
The median results are displayed on a logarithmic scale. 
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Figure 9: MRR and mean value vs. query length for all three 

query types on the pitch matcher 

As was the case for pitch and duration experiments, the longer 
the queries, the better the results. The slightly worse 
performance on the imperfect and perfect query experiments 
on the matcher that uses only pitch, as opposed to the matcher 
that uses both pitch and duration shows the importance of the 
duration information.  
There is even more significant degradation on the performance 
of the insertion and deletion query set on the matcher that only 
considers pitch, compared to the matcher that considers both 
pitch and duration. Since the matcher is only comparing the 
deltaPitchs of the observation and the targets, as insertions and 
deletions are introduced there is a greater likelihood that sub-
path’s of the other targets in the database will match the query 
then there is in the case of a matcher that compared both the 
pitch and duration. 

5.3 Results of Matcher that Uses Duration Only 

The MRR and median results by length for the matcher that 
only considers duration are given in Figure 10. The median 
results are displayed on a logarithmic scale. 
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Figure 10: MRR and mean value vs. query length for all three 

query types on the duration matcher 

The pitch-only matcher outperforms the duration-only matcher 
for all three query sets because of our implementation. Pitch 
contains more information about a song than duration. The 
pitch data is used to compare the actual deltaPitch of an 
observation and a target, while the duration data is used to 
compare the ratio of IOIratios The ratio of IOIratios is merely 
a measure of the similarity of durations, and it contains no real 
indication of rhythm: IOratio models tempo variation well. In 
cases where rhythm is a critical determining feature for a 
query, IOratio is not a good measure. 
There is significant performance degradation on the query set 
with insertions and deletions for the duration-only matcher 
compared to the pitch-only matcher. Since the duration 
matcher considers less information, there is an even greater 
chance traversing the sub-paths of the different targets in the 
database with a high probability. Since the duration-only 
matcher traverses so many paths with a high probability when 
queries contain insertions and deletions, query length has a 
miniscule effect on performance. 

6 Summary and Conclusions 
There are several trends apparent from the experimental data. 
The first trend is that longer queries have a positive effect on 
retrieval performance, which is as we expected. As the size of 
a database grows, we expect that this effect will be even more 
pronounced. Moreover, we expect these results to generalize 
across retrieval algorithms; in other words, we believe that the 
“query-length” effect is not dependent on our particular HMM 
topology, but will extend to string matchers, different HMM 
topologies, and so forth. 
The one caveat is that insertions and deletions mitigate the 
“query-length” effect. We believe that this mitigation is more 
an artifact of our particular retrieval method. We are looking 

at ways around this problem, such as using a different 
algorithm for ranking (e.g., Viterbi) and modifying our model 
topology.  
One possible topological improvement would be to extend our 
model to include insertion and deletion states. This would 
allow the observation to match against a longer path in the 
target, and the subsequent matching of other target’s sub-
strings would not have as dramatic an effect. The HMM 
architecture is easily modeled to include insertions and 
deletions (Durbin, Eddy et al. 1998). Thus, we would no 
longer have problem of traversing disjoint sub-paths each time 
an insertion or deletion is encountered. A potential drawback 
of this approach is that search time will increase significantly 
when the topology admits more paths. 
 The second trend is that all the experiments show a saturation 
point, where retrieval performance reaches a maximum with 
fairly well-defined inflection point. We were expecting more 
gradual performance improvement without a saturation point. 
The shape of these curves gives us guidance about the 
accuracy of our retrieval system. For example, on relatively 
short queries (i.e., to the “left” of the inflection point), we 
expect that ranking will not be very accurate. We are looking 
at ways to model accurately and possibly report it as a 
confidence factor to the user. 
The experiments suggest changing our current duration model, 
particularly to one that more accurately represents rhythm.  
The most encouraging result from these experiments is the 
performance of the imperfect queries. Our system successfully 
retrieved using the set of imperfect queries on the large 
synthetic database. This shows both the importance of 
obtaining an accurate observation model and that retrieval is 
possible on large databases. In future work, we plan to have a 
training mode for our system to create an accurate observation 
model specific to an individual. Accurately trained and 
modeled QBH HMMs systems can accurately perform 
retrieval on large music databases, and have the potential to be 
used for real world applications.  
In addition, we intend to experiment with large datasets of 
queries collected from singers. We plan to gather aggregate 
statistics of the same type as did for the research presented 
here. We also plan to follow the same experimental plan 
evaluating our system. 
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