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Abstract
For automatically transcribing human-performed
polyphonic music recorded in the MIDI format,
rhythm and tempo are decomposed through proba-
bilistic modeling using Viterbi search in HMM for
recognizing the rhythm and EM Algorithm for esti-
mating the tempo. Experimental evaluation are also
presented.

1 Introduction
We are investigating automatic transcription of MIDI (Musical
Instrument Digital Interface) signals. As the MIDI format al-
ready includes the pitch information, the problem here is to rec-
ognize the note values, i.e., intended nominal lengths of notes
as shown in Fig. 1, which we refer to “rhythm recognition.”

Conventionally, it has been done by “quantization” of IOIs
(Inter-Onset Intervals) of played notes. We used HMM (Hid-
den Markov Model) to solve this problem (Saito et al. 1999) by
modeling both fluctuating note lengths and probabilistic con-
straints of note sequences. In this work, we also included mul-
tiple tempos in the HMM to find the best-matching tempo. In
other works, tempo was included as hidden variables of prob-
abilistic models (Cemgil et al, 2000; Raphael, 2001), or deter-
mined by clustering IOIs (Dixon, 2001), and rhythm was esti-
mated based on the tempo.

In this paper, we treat rhythm recognition as a problem of prob-
abilistically decomposing the observed IOIs into rhythm and
tempo components.

2 Rhythm and Tempo
The observed duration (IOI)x [sec] of note in the performed
MIDI data is related both to intended note valueq [beats] in the
score and to tempo variableτ [sec/beat] (average time per beat)
by:

x[sec]= τ [sec/beat]× q[beats] (1)

Rhythm recognition can be defined as a decomposition of IOIs
X = {x1, · · · , xN} into tempoT = {τ1,· · ·,τN} and rhythm
Q={q1,· · ·,qN}. This is a kind of ill-posed problem sincêQ
and T̂ are not determined uniquely. In principle, any rhythm
can be expressed in various ways, e.g. twice note values and
half tempo gives the same note duration in Eq. 1. Furthermore,
fluctuation of tempo and rhythm can not be completely sepa-
rated. Decomposition is possible only in a probabilistic sense
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Figure 1: Rhythm recognition for automatic transcription

assuming thatT is constant or slowly changing (at least within
phrases), and thatQ often fit common rhythm patterns. Human
often can recognize rhythm from the musical performance be-
cause they havea priori knowledge of rhythm, e.g., what type
of rhythm patterns are likely to appear. In our approach, “most
likely rhythm patterns” for the given MIDI data are estimated
by search in the proposed probabilistic models, whose param-
eters are optimized by stochastic training with existing scores
and performances.

Our goal is to separate rhythm and tempo by iterating the es-
timation of the two. First, we estimate rhythm from the IOIs
of the given MIDI using tempo-invariant feature parameters.
Then, using the estimated rhythm and the given IOIs, the tempo
is estimated. Rhythm and tempo are alternately re-estimated us-
ing the estimated counterpart. In the next sections, we discuss
first two steps.

3 HMM Using Rhythm Vectors
This section describes the method to estimate rhythm from ob-
served IOIs (Saito, 1999; Otsuki, 2001; Takeda, 2002).
3.1 Stochastic Modeling of Rhythm Patterns
We assume that a sequence of note values appear in mu-
sic with certain probability, which can be approximated
by an n-gram probability, i.e., a conditional probability
P (qt|qt−1, · · · , qt−n+1) dependent on the history of previous
n − 1 note values. Similar to then-gram language model
often used in speech recognition, the probability of rhythm
Q = {q1, · · · , qN} is approximated by

P (Q) ≈ P (q1, · · · , qn−1)
N∏

t=n

P (qt|qt−1, · · · , qt−n+1) (2)

Conditional probabilities can be obtained through statistical
training using already composed music scores.
3.2 Rhythm Vector: a Tempo-Invariant Feature
We introduce a tempo-invariant feature named “rhythm vector,”
since the tempo of the input data is not given in advance and
it may vary throughout the data. From our assumption that the
tempo is constant or changes slowly, the proportion of consecu-
tive note lengthsx is nearly independent from tempoτ accord-
ing to Eq.1). Therefore, we introducerhythm vectoras follows:

rt = (r1
t , · · · , rm

t ) where ri
t =

xt+i

xt + · · ·+ xt+m−1
(3)



Table 1: Formulating rhythm recognition with HMM
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Figure 2: Rhythm vector as the output of HMM

Here, probabilistic distributionp(r) is assumed to follow the
normal distributionN (µ,Σ), whose parameters, mean vector
µ and covariance matrixΣ, can be obtained through statistical
training using human-performed MIDI data.
3.3 Rhythm Estimation: Search Problem in HMM
The two probabilistic models of rhythm vector and rhythm pat-
tern can be combined in the HMM framework as shown in Table
1 and Fig. 2. This HMM gives the probabilityP (X|Q)P (Q),
whereP (Q) is the probabilistic model of rhythm score and
P (X|Q) is that of rhythm vectors and tempo fluctuation.

Rhythm estimation is to find the time sequence of states in the
state transition network,Q, that gives the maximuma poste-
riori probability,P (Q|X), given a sequence of observed note
lengths series,X. Maximizing P (Q|X) is equivalent to max-
imizing P (X|Q)P (Q) according to Bayes theorem. The opti-
mal sequence of states in HMMs is efficiently found through the
well-known Viterbi algorithm. The sequence of intended notes
Q̂ is estimated in the maximum likelihood sense.
3.4 Multiphonic Case
The above stated method can also be applied to the multiphonic
case. Projecting the onset timings of all notes in a multiphonic
music score onto a one-dimensional time axis, we obtain a
“rhythm score” from which then-gram “grammar” can be de-
fined in the same way. After preprocessing for grouping nearly
simultaneous onsets, the rhythm score is recognized from the
input sequence of IOIs across multiple voices in the observed
MIDI signal, followed by postprocessing for assigning note
length to each of recognized note onsets.

4 Tempo Estimation
TempoT , the sequence of instantaneous tempo estimated by
τt = xt/q̂t from observed IOIsX and the estimated rhythm̂Q,
often contain errors as shown in Fig. 3 such as double tempo,
half tempo, and errors due to confusion by triplets mainly
caused by the nature of rhythm vector. We model the distri-
bution of estimated tempoT by a Gaussian mixture distribution
and apply the EM (Expectation-Maximization) algorithm to es-
timate the true tempo. After estimating the tempo, note values
are estimated again.

5 Experimental Evaluation
The proposed method was evaluated by using 3 classical mu-
sic pieces listed in Table 2 recorded in the MIDI format, which
were performed 2 times by 5 players for each piece. 19 kinds
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Figure 3: Tempo plot: derived from rhythm recognition results

Table 2: Testing music pieces for rhythm recognition

Fuga J. S. Bach: Fuga in C minor, BWV847, Well-
Tempered Clavier Book I.

Sonata L. v. Beethoven: Piano Sonata No. 20, 1st Mov.

Tr äumerei R. Schumann: “Tr̈aumerei” from “Kinderszenen,”
Op. 15, No.7.

Table 3: Rhythm recognition results [%]
Data Prep. RRR-1 RRR-2
Fuga 97.5 94.1 94.3
Sonata 97.4 60.7 78.5
Tr äumerei 97.5 68.4 72.0

of note values (whole note, quarter note, etc.) were treated and
represented by 6859 (= 193) hidden states in the HMM, whose
transition probabilities were trained by 13 classical pieces con-
taining 4355 note values, and whose output probabilities were
trained by 2 music pieces by 2 players containing 1288 IOIs.
Rhythm recognition rate RRR-1 (first estimation of rhythm) and
RRR-2 (rhythm estimation after tempo estimation) were ob-
tained as shown in Table 3. “Prep” shows the rate of correct
preprocessing (synchronizing grace notes, etc.).

6 Conclusion
We proposed a method for rhythm recognition of MIDI signals
performed by humans. In the experimental evaluation, the orig-
inal rhythm was successfully estimated from MIDI piano per-
formances.
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