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Abstract

Most of the existing methods for measuring melodic
similarity use one-dimensional textual representa-
tions of music notation, so that melodic similarity
can be measured by calculating editing distances. We
view notes as weighted points in a two-dimensional
space, with the coordinates of the points reflecting the
pitch and onset time of notes and the weights of points
depending on the corresponding notes’ duration and
importance. This enables us to measure similarity by
using the Earth Mover’s Distance (EMD) and the Pro-
portional Transportation Distance (PTD), a pseudo-
metric for weighted point sets which is based on
the EMD. A comparison of our experiment results
with earlier work shows that by using weighted point
sets and the EMD/PTD instead of Howard’s method
(1998) using the DARMS encoding for determining
melodic similarity, it is possible to group together
about twice as many known occurrences of a melody
within the RISM A/II collection. Also, the percentage
of successfully identified authors of anonymous in-
cipits can almost be doubled by comparing weighted
point sets instead of looking for identical representa-
tions in Plaine & Easie encoding as Schlichte did in
1990.

1 Introduction

Representing music as a weighted point set in a two-dimen-
sional space has a tradition of many centuries. Ever since the
13th century, music has been written as a set of notes (points)
in a two-dimensional space, with time and pitch as coordinates.
Varying characteristics are associated with the notes by, for ex-
ample, using different symbols for different note durations. The
look of written music has changed somewhat over the last 8 cen-
turies, but the basic idea of representing music as a weighted
point set has been followed for almost a millenium, and it has
served composers and performers well. Since weighted point

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. c

�
2003 Johns Hopkins University.

sets seem to be so well suited to representing music, it feels
natural to measure melodic similarity directly by comparing
weighted point sets instead of first transforming the music into
one-dimensional abstract representations.

We studied the use of the Earth Mover’s Distance (EMD), which
measures a minimum flow for transforming one weighted point
set into another, for the purpose of measuring melodic similar-
ity. Because the triangle inequality does not hold for the EMD,
we also used a modified version of it, the Proportional Trans-
portation Distance (PTD), which was proposed by Giannopou-
los and Veltkamp (2002). A distance measure for which the
triangle inequality holds can be used to make database searches
more efficient by using indices.

The music database we used for evaluating the EMD and PTD
as similarity measures contains about half a million musical in-
cipits1 from the RISM A/II collection (Répertoire International
des Sources Musicales, 1995-2002).

We evaluated the appropriateness of the EMD and PTD for
measuring melodic similarity by constructing groups of simi-
lar melodies within the RISM A/II collection and comparing
our results to the “Frankfurt Experience” and “Harvard Expe-
rience” of sorting RISM incipits described by John B. Howard
(1998). We were able to identify about twice the percentage of
melodies by anonymous composers and group together 76 % in-
stead of 46 % of the known occurrences of a tune called “Roslin
Castle”.

2 Melodies as weighted point sets
Johannes Brahms: Himmel strahlt so helle und klar (Zigeunerlieder)� � �� � ����	 ���
	 �� 
� � � � ��

(0, 221; 1.5)

(1.5, 209; 0.5)

(2, 204; 1.5)

(3.5, 215; 0.5) (4, 209; 0.5)

(4.5, 198; 0.5)

(5, 186; 1)

(6, 192; 2)

Figure 1: An example of music represented with a weighted
point set. Format: (Time, Pitch; Weight). In this example, the
weights only reflect the note durations. Because of this, the
time coordinate here equals the sum of the weights of preced-
ing notes. Pitches are specified using Hewlett’s (1992) base-40
system.

In order to be able to apply a transportation distance measure,
we must transform the melodies we want to compare into sig-

1Incipits are the beginnings of pieces, typically about 20 notes long.



natures. By signature, we mean a set of points in the two-
dimensional Euclidean space where each point has a weight as-
sociated with it. The two dimensions are time and pitch.

When transforming melodies into signatures, we create one
point for each note. Rests are encoded implicitly as the time
spans that are not covered by points. As a consequence, we do
not distinguish between two subsequent quarter rests and one
half rest, but we do distinguish between two subsequent quarter
notes and a half note; only the latter sounds differently.

2.1 The time coordinate

In our database, durations of notes and their positions within
measures are specified using divisions of a quarter note, in a
way similar to the MIDI format. With every melody, the num-
ber of divisions per quarter note is stored. This number is cho-
sen such that the duration of every note in the melody can be
specified as a whole number. For example, if there are 96 di-
visions per quarter note, a quarter note has duration 96, a half
note has duration 192, and a sixteenth 24.

We want time coordinates in signatures to be independent of
the number of divisions chosen for a particular melody. There-
fore, we calculate the time coordinate of a note as the sum of
the lengths of measures preceding the note plus the note’s po-
sition within its measure, divided by the number of divisions
for a quarter note. Measure lengths are calculated as follows:
for each note or rest in a measure, the duration is added to the
position within the measure. The maximum of all of these end
points of notes and rests is then taken as the measure length.

In order to skip leading rests – we do not want to distinguish
between melodies that differ only in the duration of leading
rests –, we then subtract the very first note’s time coordinate
from all time coordinates, thereby shifting all notes so that the
first note starts at time 0.

For a complete example, see Figure 1 and Table 1.

Note
Number

Measure
Number

Pitch40 Duration Position
in bar

1 1 0 1920 0
2 2 221 1440 0
3 2 209 480 1440
4 3 204 1440 0
5 3 215 480 1440
6 4 209 480 0
7 4 198 480 480
8 4 186 960 960
9 5 192 1920 0

Table 1: The database contents for the melody shown in Figure
1. There are 960 divisions per quarter note, and rests are coded
as notes with pitch 0. To arrive at Figure 1, we first normalize
the time coordinates (i. e., divide them by 960). The durations
are then: 1920/960=2, 1.5, 0.5, 1.5, 0.5, 0.5, 0.5, 1, 2. All mea-
sure lengths are 1920/960=2. Therefore, the note onset times
are: 0, 2, 3.5, 4, 5.5, 6, 6.5, 7, and 8. This still includes the lead-
ing rest, which we want to ignore, so finally, we skip the leading
rest and subtract its duration from all subseqent notes: 0, 1.5, 2,
3.5, 4, 4.5, 5, 6. These are the time coordinates in Figure 1.

Our method of determining the length of each measure without
relying on the time signature ensures that we get sensible coor-

dinates even in cases where the notes in a measure do not match
the time signature. This actually happens with the RISM data.
See, for example, the bottom right incipit in Figure 5, where
not only the octaves are encoded incorrectly for some notes, but
there is also a mismatch of the time signature and the contents
of measures.

2.2 The pitch coordinate

Unlike MIDI files, our database contains the pitch in Walter
Hewlett’s (1992) Base-40 notation. This notation distinguishes
between notes with the same pitch, but different notations. Like
MIDI pitches, it is a number-line representation of musical
pitch notation, but with the added advantage of being interval-
invariant. I. e., the difference between any two base-40 pitch
numbers will correctly determine the notated interval name be-
tween those pitches.

2.3 Weights

Increasing a note’s weight increases the importance of it hav-
ing a counterpart of similar weight at the same position in the
compared melody. A natural method of using weights is to
make them reflect note durations. That way, differing note du-
rations at corresponding positions lead to an increase in the re-
sulting distance. For instance, in Figure 1 the note weights re-
flect only the durations. All results in this paper were obtained
with weights that only depend on note durations. By adding
more components, however, additional desirable effects could
be achieved. Two promising weight components are stress
weight and note number weight.

2.3.1 Stress Weight

There are cases where melodies clearly differ, but a distance
measure which ignores the positions of notes within mea-
sures fails to distinguish between them. For example, the two
melodies in Figure 2 would not be distinguished by the simple
distance measures used for Figure 5. By adding more weight
to notes at positions in measures which are usually emphasized,
e. g. the first beat, the measure structure can be taken into ac-
count as well.

Jean-Baptiste Lully: La Grotte de Versailles� � �� � ���� �� � � � ����
Anonymus: Litanies (Coro, without title)	 
 �� � � 
����� � � 
 � ���	

Figure 2: By adding a stress-based weight component, the dis-
tance measure can be made to reflect different measure struc-
tures. Without that, the distance would be zero for these clearly
different melodies, provided that transpositions are allowed.

2.3.2 Note Number Weight

In the RISM database, there are no clear rules about how many
notes are included in the incipits. Therefore, it happens that
very similar or identical melodies differ mainly in the number
of notes that are included in the incipit. As we shall see later,
for example in the right column of Figure 5, there are instances
where the distance between melodies becomes very large be-
cause one of them is cut off after fewer notes, not because they
contain very different musical material. One possible way of
addressing this problem is to add an extra weight component to
each note that depends on how many notes precede it. That way,



notes close to the beginning are made more important than extra
notes at the end which might not be present in all occurrences
of a melody in the database.

In Section 4.2, we will describe some adjustments of the signa-
tures which we do before applying a distance measure.

3 Similarity Measures for Weighted Point Sets

For a similarity measure (formally speaking, a function on a set
S, d : S � S � ����� �

0 � ), the following properties are usually
desirable:

i. Self-identity: For all x � S � d 	 x � x 
�� 0.

ii. Positivity: For all x 
� y in S � d 	 x � y 
�� 0.

iii. Symmetry: For all x � y � S � d 	 x � y 
�� d 	 y � x 
 .
iv. Triangle inequality: For all x � y � z � S, d 	 x � z 
�� d 	 x � y 
��

d 	 y � z 
 .
A measure with all of these properties is called a metric, while
a measure with only properties i, iii, and iv is called a pseudo-
metric. Depending on the application, different properties are
relevant. For measuring melodic similarity, we need self-identi-
ty and symmetry. The triangle inequality is useful for efficiently
searching the database (Barros et al., 1996). Positivity is not
necessarily always desired. The EMD’s partial matching prop-
erty, which is closely related to its lack of positivity (see Section
3.1.2), can be useful.

In the following subsections, we will describe the two trans-
portation distances which we used.

3.1 The Earth Mover’s Distance (EMD)

The Earth Mover’s Distance between two weighted point sets
measures the minimum amount of work needed to transform
one into the other by moving weight. Intuitively speaking, a
weighted point can be seen as an amount of earth or mass; al-
ternatively it can be taken as an empty hole with a certain ca-
pacity. We can arbitrarily assign the role of the supplier to one
set and that of the receiver/demander to the other one, setting,
in that way, the direction of weight movement. The EMD then
measures the minimum amount of work needed to fill the holes
with earth (measured in weight units multiplied with the cov-
ered ground distance). See Cohen’s Ph.D. thesis (1999) for a
more detailed description of the EMD.

3.1.1 Definition

Let A � �
a1 � a2 ������� am � be a weighted point set such that ai �� 	 xi � wi 
 ��� i � 1 ������� m � where xi � � k with wi � � � � �

0 � being
its corresponding weight. Let W=∑n

j � 1 wi be the total weight of
set A.

The EMD can be formulated as a linear programming problem.
Given two weighted point sets A � B and a ground distance d, we
denote as fi j the elementary flow of weight from xi to y j over the
distance di j. If W � U are the total weights of A � B respectively,
the set of all possible flows F ��� fi j � is defined by the following
constraints:

1. fi j � 0 � i � 1 ��������� m � j � 1 ��������� n
2. ∑n

j � 1 fi j � wi � i � 1 ��������� m

3. ∑m
i � 1 fi j � u j � j � 1 ��������� n

4. ∑m
i � 1 ∑n

j � 1 fi j � min 	 W � U 

These constraints say that each particular flow is non-negative,
no point from the “supplier” set emits more weight than it has,
and no point from the “receiver” receives more weight than it
needs. Finally, the total transported weight is the minimum of
the total weights of the two sets.

The flow of weight fi j over a distance di j is penalized by its
product with this distance. The sum of all these individual prod-
ucts is the total cost for transforming A into B. The EMD(A, B)
is defined as the minimum total cost over F , normalized by the
weight of the lighter set; a unit of cost or work corresponds to
transporting one unit of weight over one unit of ground distance.
That is:

EMD 	 A � B 
�� minF  F ∑m
i � 1 ∑n

j � 1 fi jdi j

min 	 W � U 


3.1.2 Properties and Computation

The most important properties of the EMD can be summarized
as follows:

1. The EMD is a metric if the ground distance is a metric and
if the EMD is applied on the space of equal total weight
sets.

2. It is continuous, in other words, infinitesimal small
changes in position and/or weight of existing points cause
only infinitesimal change in the its value. Moreover, the
addition of a point with an arbitrarily small weight, i. e.
noise (which can be seen as increasing its weight from zero
to a positive value) leads to an arbitrarily small change in
the EMD’s value.

3. It does not obey the positivity property if the sums of
the weights of the two sets are not equal. In that case,
some of the weight of the heavier distribution remains un-
matched. Therefore, the EMD allows for partial match-
ing. As a result, there are cases where it does not distin-
guish between two non-identical sets. Sometimes this can
be useful, for example when two incipits contain identical
melodies which are cut off after different numbers of notes.
On the other hand, this also leads to effects like the one we
see with incipit number 12 in the left column of Figure 5,
where the EMD yields a relatively low distance. Here the
surplus of weight is not all concentrated at the end of the
melody, but distributed over several rests and other places,
which leads to a false positive.

4. In the case of unequal total weights, the EMD does not
obey the triangle inequality. A simple counterexample
would be three melodies called A, B, and AB. Let us as-
sume that AB is the concatenation of A and B, and let us
assume that A and B are chosen so that the EMD yields
a distance of 1 between them. If A and B are positioned
accordingly, both the distance between A and AB and the
distance between B and AB can be zero (because both A
and B are parts of AB). Then, d 	 A, B 
!� d 	 A, AB 
"�
d 	 AB, B 
 .



As a result, methods that rely on the triangle inequality for
speeding up database retrieval cannot be used in conjunc-
tion with the EMD.

The EMD can be computed efficiently by solving the corre-
sponding linear programming problem, for example by using a
streamlined version of the simplex algorithm for the transporta-
tion problem (Hillier and Lieberman 1990). We used Rubner’s
(1998) EMD function, which implements Hillier’s and Lieber-
man’s algorithm. It is possible that the simplex algorithm per-
forms an exponential number of steps. One could use polyno-
mial algorithms like an interior point algorithm, but in practice
that would outperform the simplex algorithm only for very large
problem sizes. Since the transportation problem is a special case
of the minimum cost flow problem in networks, a polynomial
time algorithm for that could be used as well.

3.2 The Proportional Transportation Distance (PTD)

Giannopoulos and Veltkamp (2002) proposed a modification of
the EMD in order to get a similarity measure based on weight
transportation such that the surplus of weight between two point
sets is taken into account and the triangle inequality still holds.
They call this modified EMD the “Proportional Transportation
Distance” (PTD) because any surplus or shortage of weight is
removed in a way that the proportions are preserved before the
EMD is calculated. The PTD is calculated by first dividing,
for both point sets, every point’s weight by its point set’s total
weight, and then calculating the EMD for the resulting point
sets.

The PTD is defined as follows:

Let A � B be two weighted point sets, W � U the total weights of
A and B, and d a ground distance. The set of all feasible flows
F � � fi j � from A to B is defined by the following constraints:

1. fi j � 0 � i � 1 ��������� m � j � 1 ��������� n
2. ∑n

j � 1 fi j � wi � i � 1 ��������� m

3. ∑m
i � 1 fi j � u jW

U � j � 1 ��������� n
4. ∑m

i � 1 ∑n
j � 1 fi j � W

The PTD(A, B) is given by:

PTD 	 A � B 
 � minF  F ∑m
i � 1 ∑n

j � 1 fi jdi j

W

Constraints 2 and 4 force all of A’s weight to move to the posi-
tions of points in B. Constraint 3 ensures that this is done in a
way that preserves the old percentages of weight in B.

The PTD is a pseudo-metric. In particular, it obeys the triangle
inequality. It still does not have the positivity property since
the distance between positionally coinciding sets with the same
percentages of weights at the same positions is zero. However,
this is the only case in which the distance between two non-
identical point sets is zero. The PTD will distinguish between
two sets B and B

�
which differ in only one point. It has all other

properties of the EMD for equal total weight sets.

4 Adjustments of coordinates and weights,
ground distance

4.1 The ground distance

For all results in this paper, we used the Euclidean distance as
ground distance. I. e., the distance between two notes with the
coordinates (t1 � p1) and (t2 � p2) is

� 	 t1 � t2 
 2 � 	 p1 � p2 
 2.

An interesting variation, especially for polyphonic music,
would be to make the distance in the pitch dimension depend
on harmony instead of just calculating the difference of pitches.

4.2 Adjustments of coordinates and weights

Before applying one of the similarity measures for weighted
point sets described above, we adjust the signatures of the two
melodies we want to compare in several ways:

� In order to be able to recognize augmented or diminuted
versions of a melody as similar (like for example in the
right column of Figure 5, second group, melody 4), it can
be necessary to normalize the range of time coordinates.
We chose to stretch the melody with the smaller maxi-
mum time coordinate over a longer time such that after
the adjustment, both melodies’ maximum time coordinates
equal the larger maximum time coordinate before the ad-
justment. Note that with a less careful normalization, e. g.
the adjustment of a randomly chosen melody to the other
melody’s length, one can easily lose the symmetry prop-
erty. We did this alignment of durations when we used the
PTD, where there is no partial matching; when we used the
EMD, we compared the distances with and without dura-
tion alignment and took the minimum.

� It is desirable to make the distance measure independent of
transpositions. This could be done by moving one of the
two melodies up or down in pitch to a position where the
distance is minimal (Ó Maidı́n, 1998). Since finding the
optimum transposition would require the repeated applica-
tion of the similarity measure, which would take a lot of
time, we chose to transpose one of the melodies so that the
weighted average pitch is equal. This way, the similarity
measure for weighted point sets needs to be applied only
once, but this is not always the optimum solution. How-
ever, this approximation usually works well enough for
transposed versions of the same melody to appear closer
than other melodies from the database, see Figure 5.

� When the transportation distance is calculated, the trans-
portation of weight from one note to another can happen in
the time dimension, the pitch dimension, or a combination
of the two. Therefore, the range of numbers in both dimen-
sions affects the results. For all results shown in this paper,
we multiplied the time coordinates with 3 in order to avoid
all points to be placed in a very narrow, long strip like in
Figure 1, where the pitch ranges from 186 to 221 (a range
of 35), while the time only ranges from 0 to 6. An arrange-
ment of the points like in Figure 1 would make it too cheap
to move weight in the time dimension in comparison to the
pitch dimension, which would lead to notes being matched
with notes that do not really correspond with them.



4.3 An example

Figure 3 shows the weight flow for signatures of two melodies
after adjusting them as described above. Unlike the signature
shown in Figure 1, the time coordinates are now multiplied
with 3 so that weight transportation in the time and pitch di-
mensions are similarly expensive. In Figure 1, the range of
pitches is much larger than the range of time coordinates so
that transportation distance measures would match notes which
do not correspond with one another. Also, the top melody in
Figure 3 was stretched so that the maximum time coordinates
are both 28.5, and the top melody was also slightly shifted in
the pitch dimension so that the weighted average pitches are
the same.Without the pitch and duration alignments, the dis-
tance between these two melodies would be 5.41825 instead
of 0.739529. For the sake of simplicity, we treated the grace
note in the bottom melody like any other eighth note, thereby
overemphasizing it and influencing the time coordinates of sub-
sequent notes. A special treatment of grace notes would proba-
bly lead to better results.

In Figure 3, an arrow indicates the flow and the transported
weight for each pair of weighted points between which any
weight is transported. Consider, for example, the first two notes
of both melodies. Since the second melody starts with a dotted
eigth note and a sixteenth note, while the first one starts with
two eigth notes, half of the weight of the second note of the first
melody is transported to the first note of the second melody,
while the other half goes to the second note. The quarter note
which is represented as a hollow circle is only partially matched.
It has a capacity of 1, but only 0.5 weight units are transported
into it.

5 Results and comparison with earlier results

5.1 Comparison with Schlichte’s “Frankfurt Experience”

Joachim Schlichte (1990) describes an attempt of grouping sim-
ilar incipits together. This work was based on 83,243 incipits
from the RISM A/II collection. Schlichte shows that omitting
“insignificant” musical phenomena immediately leads to use-
less results, even among the small subset of 83,243 out of the
476,000 incipits that are currently available to us. The methods
he classified as useless are:

� Converting the incipits into strings of intervals and com-
paring those, thus ignoring rhythm, absolute pitch, and
rests, leads to distances of zero between very different
pieces. Schlichte gives some examples.

� Comparing strings of pitches, ignoring only rhythm and
rests, still leads to too many false positives. Transposing
all pieces into the same key before applying this method
makes matters worse.

Schlichte therefore only looked for identical incipits, which al-
ready give music scholars valuable pointers to interesting facts.
One of the interesting applications is the identification of anony-
mous pieces. Schlichte writes that among the 14,000 anony-
mous works in his data collection, 292, i. e. about 2 %, can be
automatically associated with a composer by looking for iden-
tical incipits. This comparison is based on the Plaine & Easie
encoding (Selfridge-Field, 1997) in which all RISM A/II incip-
its are stored.

Anonymus: Roslin Castle� �� ����������������� ��
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Figure 3: An illustration of a weight flow with the EMD;
the coordinates are adjusted as described in Section 4.2. The
signatures of melodies 1 and 11 from Figure 5 (left) after the
adjustments, shown in the format (Time, Pitch; Weight):
Top: (0, 180.138; 0.5), (1.58333, 175.138; 0.5), (3.16667,
169.138; 1), (6.33333, 192.138; 0.5), (7.91667, 197.138; 0.5),
(9.5, 192.138; 1), (12.6667, 186.138; 0.5), (14.25, 192.138;
0.5), (15.8333, 197.138; 0.5), (17.4167, 192.138; 0.5), (19,
186.138; 0.5), (20.5833, 180.138; 0.5), (22.1667, 175.138;
1), (25.3333, 180.138; 0.5), (26.9167, 175.138; 0.5), (28.5,
169.138; 1)
Bottom: (0, 180; 0.75), (2.25, 175; 0.25), (3, 169; 1), (6, 192;
0.5), (7.5, 197; 0.5), (9, 192; 1), (12, 186; 0.5), (13.5, 192;
0.5), (15, 197; 0.5), (16.5, 192; 0.5), (18, 186; 0.5), (19.5, 180;
1), (22.5, 175; 1), (25.5, 180; 0.75), (27.75, 175; 0.25), (28.5,
169; 1)

We compared approximately 80,000 incipits by
unidentified composers in the RISM A/II collec-
tion to all other incipits; the result can be seen at
http://give-lab.cs.uu.nl/MIR/anon/idx.html. About 13 %
of these incipits lie within a distance of less than 1 (PTD;
weights: duration only; base-40 pitches; time coordinates
multiplied with 3) from other incipits. This includes trivial
cases where the incipits are identical, but also more interesting
cases like the one shown in Figure 4, where added notes,
augmentation, transposition, and differences in rhyhtm, contour
and the sequence of intervals make it more difficult to recognize
the similarity.

Alexandre Stiévenart: Variations� �� � �      ! !! �! !!  ! !!  ! !!  ! !!   � � �  �
Anonymus: Les trois cousines - Distance: 0.928683" # $% % & && '''''''''''& && ''% % # $ & && '"

Figure 4: These two versions of the “Ah! vous dirai-je Ma-
man” theme are recognized as similar (with PTD, weights: du-
ration only). Note the extra notes in the second to last measure
of Stiévenart and the first measure of Anonymus, which lead
to differences both in the sequence of intervals and the con-
tours, and the fact that the Stiévenart version is an augmented
and transposed version.

In order to see how many of these matches are actually use-
ful and would not have been found by just looking for identical



pieces, we manually checked 100 randomly chosen search re-
sults with distances below one. 55 % of these works only match
with other anonymous works. For 19 %, a composer could be
found because the compared incipits are identical. This is sim-
ilar to Schlichte’s result – 19 % of 13 % are 2.47 %, while
Schlichte’s figure is 2.08 %. We expect a slightly higher per-
centage because we do not compare the Plaine & Easie encod-
ings, but our database contents as described in Section 2, which
means that we view more melodies as identical than Schlichte
did. For example, we ignore beaming. For another 11 %, we
could determine the composer although the incipits are not iden-
tical. Therefore, our method leads to the identification of about
3.9 % of all anonymous pieces instead of Schlichte’s 2.08 %.

5.2 Comparison with Howard’s “Harvard Experience”

Howard (1998) describes a later attempt of grouping together
similar incipits from the RISM A/II collection. This work was
based on a subset of our collection with at most half as many2

incipits. The U. S. RISM officials did not, like their Frankfurt
colleagues, compare Plaine & Easie encodings, but converted
the incipits into the DARMS (Selfridge-field, 1997) encoding
language. They compared sorting results of five encoding types:

1. the complete encoding with all parameters,

2. the complete encoding transposed to a common pitch reg-
ister,

3. the encoding stripped of such features as beaming, bar
lines, and fermatas,

4. the encoding stripped of the items given in (3) plus grace
notes,

5. the encoding stripped of the items given in (3) and (4) plus
rhythmic values, rests, and ties, with the transposition to
a common register (2) but with preservation of repeated
notes.

None of the five encoding types lead to more than 6 out of
13 known occurrences of a song called “Roslin Castle” being
sorted together among not more than 230,000 incipits.

Figure 5 shows the results of some queries for the same song
with the EMD (left column) and PTD (right column). The
EMD query groups together 11 out of 16 known occurrences
among 476,000 incipits, i. e. a larger percentage among more
than twice as many potential false positives in comparison with
the “Harvard experience”. If one does not count the 16th oc-
currence, shown at the bottom right, because it is not encoded
correctly, our method compares even more favourably (73 %
versus 46 %). The PTD result shown in Figure 5 does not group
together more occurrences, but at least the false positives are
musically very similar.

Figure 5 also illustrates the different properties of the EMD and
PTD:

� The EMD groups more occurrences together in just one
query result. Among the 16 known occurrences of “Roslin

2Howard does not clearly say how many, but from the introduction
to his paper it can be inferred that the number was probably below
230,000.

Castle”, there are 3 groups with similar numbers of notes.
The fact that the EMD allows partial matching, while the
PTD matches all notes, leads to a clear distinction of these
groups by the PTD, but not the EMD.

� Because of the weight normalization, the PTD recognizes
augmented or diminuted versions of the same melody as
similar. In the second group of melodies in the right col-
umn of Figure 5, melody number 4 is recognized as simi-
lar to the other melodies in the group, while the use of the
EMD leads to a rather large distance since there is a large
difference in weight between corresponding notes.

� The false positives in the right column of Figure 5 (num-
bers 6 and 8 in the first group) are more similar to the mu-
sical material in the rest of the query result than the false
positives in the left column (numbers 12 to 16). The rea-
son is that the EMD allows an unmatched weight surplus
to be spread over the whole melody. In other words, this
distance measure does not distinguish between a few ex-
tra or missing blocks of notes on the one side and differ-
ences between many individual notes or rests on the other
side. When the PTD is used, blocks of extra or missing
notes lead to the wrong notes being compared to one an-
other, which usually dramatically increases the distance.
Any differences between individual notes are also penal-
ized.

6 Indexing

We eliminated the need for calculating the expensive trans-
portation distance to a query for every melody in the database
by exploiting the triangle inequality and using vantage objects
(Vleugels and Veltkamp, 2002). As a preparation, k vantage ob-
jects are randomly chosen from the database containing n point
sets, and the distance of each of the n point sets to each of the k
vantage objects is calculated in the feature space by determining
a transportation distance. These transportation distances can be
viewed as the coordinates of the point sets in a k-dimensional
Euclidean space.

Thanks to the triangle inequality, the Euclidean distance be-
tween two point sets in the k-dimensional space is a lower bound
for the transportation distance in the feature space (Barros et al.,
1996).

The search for point sets which are closer than r to the query
point set can now be limited to those point sets whose Euclidean
distance from the query in the k-dimensional Euclidean space
of transportation distances is less than r. Only for those, the
transportation distance needs to be calculated. If the query ob-
ject is not yet in the database, its distances to the k vantage
objects need to be calculated as a first step. Then, by perform-
ing an approximate nearest-neighbour search in the Euclidean
space, one can answer a query by performing O 	 m logn 
 Eu-
clidean distance calculations (Arya, Mount, Netanyahu, Silver-
man, and Wu, 1994) plus m expensive transportation distance
calculations, where m, the number of reported point sets, de-
pends on how the weighted point sets are distributed in the Eu-
clidean space. If one prefers an exact nearest neighbour search,

one can query a k-dimensional kd-tree using O 	 n1 �
1
k � m 
 Eu-

clidean distance calculations. In practice, with our database of
476,000 point sets and a maximum distance r of 5, we need
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Figure 5: Query results for “Roslin Castle” among 476,000 melodies. Weights reflect only note durations. The left column shows
the top 17 matches of an EMD-based query, containing 12 occurrences of “Roslin Castle”. The right column contains all 16 known
occurrences of “Roslin Castle”, 15 of which are retrieved with 3 PTD-based queries whose results are separated with horizontal
lines. There is an encoding error which prevents the 16th occurrence from being shown in other query results – in the Plaine & Easie
format used for collecting the RISM data, it is easy to get the octaves wrong. For a discussion of the differences between EMD (left
column) and PTD (right column), see Section 5.2.

less than 1000 expensive calculations instead of 476,000, which
reduces the query running time on a 2-GHz Pentium 4 system
with Windows XP from approximately 70 minutes to 9 seconds,
without altering the result.

Although the triangle inequality holds only for the PTD and not
generally for the EMD, we tried this indexing method for EMD
distances as well. In most cases, the results are not distorted.

7 Conclusions and future goals

In comparison to Schlichte’s and Howard’s experience with
grouping similar melodies from the RISM A/II collection to-
gether, our transportation distance measures perform much bet-
ter. It is possible to group together more occurrences of a
melody among a larger total number of incipits. Also, with
transportation distance measures, it is easy to recognize sim-



ilarities even if they are hidden by additional notes or differ-
ent rhythm. Finally, there are transportation distance measures
which obey the triangle inequality, e. g. the PTD, so that it
is possible to efficiently search large databases. We used this
fact for an interactive online search engine which searches all
476,000 melodies in our database.

One important strength of transportation distances which we
have not exploited yet is the fact that they should allow us to
compare polyphonic music in much the same way as mono-
phonic music. For weighted point sets, it should not make much
of a difference whether there are points which share the same
time coordinate.

The partial matching provided by the EMD does not always
make musical sense, as can be seen with the false positives in
the left column of Figure 5. In order to be able to find motifs and
themes within complete pieces, it might be necessary to split the
pieces into small chunks and then use a transportation distance
for comparing chunks. The EMD’s partial matching, possibly
in conjunction with a consonance ground distance, might then
e. g. prove useful for searching full scores based on themes
taken from a piano reduction.

Another promising application would be the use of transporta-
tion distance measures for building a Query-by-Humming sys-
tem without explicit note onset detection. Note onset detection
is a difficult problem (Pauws, 2002; Prechelt and Typke, 2001).
This task could be delegated to the transportation distance mea-
sure, which would combine the two tasks of grouping FFT win-
dows3 into notes and comparing sets of notes.
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