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Abstract

We represent music as sets of points or sets of hori-
zontal line segments in the Euclidean plane. Via this
geometric representation we cast transposition invari-
ant content-based music retrieval problems as ones
of matching sets of points or sets of horizontal line
segments in plane under translations. For finding the
exact occurrences of a point set (the query pattern)
of size m within another point set (representing the
database) of size n, we give an algorithm with run-
ning time O(mmn), and for finding partial occurrences
another algorithm with running time O(mn logm).
We also use the total length of the overlap between
the line segments of a translated query and a database
(i.e., the shared time) as a quality measure of an oc-
currence and present an O(n log n +mn logm) algo-
rithm for finding translations giving the largest possi-
ble overlap. Some experimental results on the perfor-
mance of the algorithms are reported.

1 Introduction

The methods introduced for content-based music retrieval on
symbolically encoded music have largely been applications of
conventional approximate string matching techniques based on
the edit distance (Mongeau and Sankoff, 1990; Ghias et al.,
1995; McNab et al., 1997; Lemstrom, 2000) or discrete time-
warping (Zhu and Shasha, 2003). The techniques work nicely
with monophonic music, as such music can be represented with
linear sequences of discrete pitch levels. By using intervals be-
tween successive pitches instead of absolute pitch levels, match-
ing becomes transposition invariant. Similarly, one achieves an
invariance on tempi by considering the duration ratios between
successive notes.

Problems get more complicated, however, when dealing with
polyphonic music like symphony orchestra scores. Such a mu-
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sic may have very complex structure with several notes simul-
taneously on and several musical themes developing in paral-
lel. One might want to find similarities or other interesting pat-
terns in it, for example, in order to make musicological com-
parative analysis of the style of different composers or even for
copyright management purposes. Formulating various music-
psychological phenomena and models such that one can work
with them using combinatorial algorithms becomes a major
challenge.

Quite recently, Meredith et al. (2001) suggested a geometric,
piano-roll-like music representation and content-based music
retrieval algorithms working on such representation. We will
use here an extended representation that includes the durations,
as well. Using this representation, the excerpt of Fig. 1 given
in the common music notation, is represented geometrically in
Fig. 2. The content should be evident: each horizontal bar rep-
resents a note, its location in the y-axis gives its pitch level and
the start and end points in the z-axis give the time interval when
the note is on. The piano-roll representation as such is an old
invention; in music retrieval research it has been used earlier
e.g. by Dovey (1999).

We will use this simple two-dimensional geometric represen-
tation of music. In this representation, a piece of music is a
collection of horizontal line segments (at times simply points)
in the Euclidean two-dimensional space R?; the horizontal axis
refers to the time, the vertical to the pitch values.

Given two such representations, P and T, we want to find the
common patterns shared by P and T when P is translated with
respect to T'. Translating P means that some f € R? is added
to all elements of P. Obviously, the vertical component of the
translation yields transposition invariance of the pattern match-
ing while the horizontal component means shifting in time.
When designing the algorithms we assume that T' represents
a large music database while P is a shorter query pattern.

Three problems will be considered.

(P1) Find translations of P such that all starting points of the
line segments of P match with some starting points of the
line segments in T'. Hence the on-set times of all notes of P
must match. We also consider a variant in which the note
durations must match, too, or in which the time segment
of T covered by the translated P is not allowed to contain
any extra (i.e., unmatched) notes.

(P2) Find all translations of P that give a partial match of the
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Figure 1: An excerpt of polyphonic music from Einojuhani Rautavaara’s opera Thomas (1985). Printed with the permission of the

publisher Warner/Chappell Music Finland Oy.
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Figure 2: The example of Fig. 1 is given in piano-roll representation. Consider a query pattern P = ab, f, e, f, ab (given in pitch
class symbols) where the first 4 events are quarter notes and the last a half note. In the left panel, the location of P does not give a
solution to (P1) since the fifth note onset does not match: the reader may check that no other translation of P will give any better
match. However, for problems (P2) and (P3) the left panel gives a quite good solution: 4 of the 5 onset times match (problem
(P2)), and the shared time is 5 quarter notes. If the query is slightly out of time (the right panel) (P2) becomes useless while (P3)

still founds a satisfactory match.

on-set times of P with those of T'. In a partial match, only
a subset of the on-set times of P should match.

(P3) Find translations of P that give longest common shared
time with T, i.e., the longest total length of the line seg-
ments that are obtained as intersection of the line segments
of T and the translated P.

Fig. 2 illustrates all three problems. There is no solution of (P1)
in either of the examples, a good solution to (P2) and (P3) in
the example on the left, and a satisfactory result to (P3) in the
example on the right.

Our problems are basic content-based music retrieval questions
when transpositions are allowed and note additions and dele-
tions are modeled as partial matches. (P1) and (P2) work well
with ideal P and T where the start points of the notes are ex-
act. However, this is not the case neither with a query by hum-
ming pattern, nor with a database created by playing a MIDI
instrument. Problem (P3) is of a novel type we have not seen
to be considered before. It allows local changes in note start

points and durations, thus providing needed tolerance for such
cases, see Fig. 2. Moreover, it is not deteriorated anyway by
note fragmentations or consolidations (Mongeau and Sankoff,
1990). Tolerance to interval changes could be incorporated by
representing the notes as narrow rectangles instead of line seg-
ments.

For the problem (P1) we give in Sect. 3 an algorithm that needs
time O(mn) and working space O(m). In practice the average
running time is O(n). Here m is the size (number of the line
segments) of P and n is the size of T'. For the problem (P2) we
give in Sect. 4 an algorithm with running time O(mn logm)
and space O(m), and for the problem (P3) we describe in
Sect. 5 a method that needs time O(nlogn + mnlogm) and
space O(m + n). We assume that T' and P are given in the
lexicographic order of the starting points of the line segments.
Otherwise extra O(n log n+m logm) time and O(n+m) space
is needed for sorting. All algorithms are based on a sweepline
type scanning of T, a technique widely used in computational
geometry (Bentley and Ottmann, 1979). In Sect. 6 we demon-



strate by empirical evaluation that all our algorithms are fast
enough to be useful in practice.

A preliminary report of the algorithms in this paper appeared as
(Ukkonen et al., 2003).

1.1 Related work

In this paper, we improve the results by Wiggins et al. (2003)
(see also (Meredith et al., 2001)). Our solution for (P1), be-
ing closely related to their SIA(M)EX algorithm, is presented
here for completeness, and making it easier to understand the
solutions for (P2) and (P3). For (P2) we have improved their
time bound (from O(mn log(mn)) to O(mnlogm)) and, more
noteworthy, their space requirement from an excessive O(mn)
bound to a practical O(m) bound. To our knowledge (P3) has
not been studied in the literature.

The majority of the literature on symbolic content-based music
retrieval algorithms deals only with monophonic music. The
polyphonic music retrieval algorithms based on the edit dis-
tance framework consider only the order of the notes out of the
rhythmic information. Examples of such studies are by Dovey
(2001), who uses dynamic programming for finding polyphonic
patterns with restricted gaps, by Lemstréom and Tarhio (2003),
who apply bit—parallelism for finding transposed monophonic
patterns within polyphonic music, and by Holub et al. (2001),
who use bit—parallelism for finding approximate occurrences of
patterns with group symbols. A recent bit-parallel algorithm by
Lemstrém and Navarro (2003) is capable of dealing with gaps
in polyphonic music.

The PROMS system (Clausen et al., 2000) is another exam-
ple of polyphonic content-based music retrieval systems that
accounts for note-on information (in addition to pitch informa-
tion).

2 Linesegment patterns

A line segment pattern in the Euclidean space R? is any finite
collection of horizontal line segments. Such a segment is given
as [s, s'] where the starting point s = (s, s,) € R? and theend
point s = (s},s;) € R* of the segment are such that s, = s,

and s, < s/. The segment consists of the points between its
end points. Two segments of the same pattern may overlap.

We will consider different ways to match line segment patterns.
To this end we are given two line segment patterns, P and T'.
Let P consist of m segments [p1, pi],- - -, [Pm,Pl,] and T of n
segments [t1,t1],-- -, [tn, t,,]. Pattern T may represent a large
database while P is a relatively short query to the database in
which case m < n. Itis also possible that P and T are about
of the same size, or even that they are the same pattern.

We assume that P and T are given in the lexicographic order of
the starting points of their segments. The lexicographic order of
points a = (az,ay) and b = (b;, b,) in R? is defined by setting
a < biffa, < by, 0ra; = b, and a, < b,. When representing
music, the lexicographic order corresponds the standard reading
of the notes from left to right and from the lowest pitch to the
highest.

So we assume that the lexicographic order of the starting points
ispr <ps < .- < ppandit; <ty <.-- <, Ifthisis not
true, a preprocessing phase is needed, to sort the points which
would take additional time O(mlogm + nlogn).

A translation in the real plane is given by any f € R2. The
translated P, denoted by P + f, is obtained by replacing any
line segment [p;, pi] of P by [p; + f,p} + f]. Hence P + f is
also a line segment pattern, and any point v € R? that belongs
to some segment of P is mapped in the translationasv — v+ f.

3 Exact matching

Let us denote the lexicographically sorted sets of the start-
ing points of the segments in our patterns P and T as P =
(p1,p2,-+-,0m) and T = (t1,ta,...,t,). We now want to find
all translations f suchthat P+ f C T. Sucha P+ f is called an
occurrence of P in T. As all points of P + f must match some
point of T, p; + £ in particular must equal some ¢;. Hence there
are only n potential translations f that could give an occurrence,

namely the translations ¢; — p; where1 < j < n.

To check for some translation f = ¢; — p1, whether also the
remaining points p> + f,...,pm + f of P + f match, we uti-
lize the lexicographic order. The method will be based on the
following simple lemma.

Denote the potential translationsas f; = t; —py for1 < j < n.
Letp € P, and let f; and f; be two potential translations such
thatp + f; = tand p + f; = t' forsome ¢,t' € T. That is,
when p; matches ¢; then p matches ¢, and when p; matches ¢
then p matches ¢'.

Lemmal Ifj < j'thent < ¢'.

Proof. If j < j', thent; < t; by our construction. Hence
also f; < f;, and the lemma follows. O

Our algorithm makes a traversal over T', matching p; against
the elements of 7. At element ¢; we in effect are considering
the translation f;. Simultaneously we maintain for each other
point p; of P a pointer ¢; that also traverses through 7. When
g; is at t;, it in effect represents translation ¢; — p;. This is
compared to the current f;, and the pointer g; is updated to the
next element of T after g; if the translation is smaller (the step
gi + nezxt(g;) in the algorithm below). If it is equal, we have
found a match for p;, and we continue with updating ¢;4+1. It
follows from Lemma 1, that no backtracking of the pointers is
needed.

The resulting Algorithm 1 is given below.

ALGORITHM 1.

(1) fori+1,...,mdog; + —o0
(2) gm+1 +

(3) forj«1,...,n—mdo

4 f<ti—p

() i1

(6) do

@) 11+1

(8) i + max(g;, ;)

9) while g; < p; + f do ¢; < next(q;)

(10) until g; > p; + f
(11) if 1 = m + 1 then output(f)
(12) end for.




Note that the main loop (line 3) of the algorithm can be stopped
when j = n—m, i.e., when p; is matched against ¢,,_,,,. Match-
ing p; beyond t,,_,,, would not lead to a full occurrence of P
because then all points of P should match beyond ¢,,_,,, but
there are not enough points left.

That Algorithm 1 correctly finds all f such that P + f C T is
easily proved by induction. The running time is O(mn), which
immediately follows from that each g; traverses through T (pos-
sibly with jumps!). Also note that this bound is achieved only in
the rare case that P has ©(n) full occurrences in 7. More plau-
sible is that for random P and T, most of the potential occur-
rences checked by the algorithm are almost empty. This means
that the loop 6-10 is executed only a small number of times
at each check point, independently of m. Then the expected
running time under reasonable probabilistic models would be
O(n). In this respect Algorithm 1 behaves analogously to the
brute-force string matching algorithm.

It is also easy to use additional constraints in Algorithm 1. For
example, one might want that the lengths of the line segments
must also match. This can be tested separately once a full match
of the starting points has been found. Another natural require-
ment can be, in particular if P and T represent music, that there
should be no extra points in the time window covered by an oc-
currence of P in T. If P + £ is an occurrence, then this time
window contains all members of T' whose z-coordinate belongs
to the interval [(p1+ )z, (Pm+f) ). When an occurrence P+ f
has been found in Algorithm 1, the corresponding time window
is easy to check for extra points. Let namely ¢; = p; + f and
tj; = pm + f. Then the window contains just the points of T
that match P + f if and only if j/ — j = m — 1 and ¢;_; and
tj+1 do not belong to the window.

4 Largest common subset

Our next problem is to find translations f such that (P + f)NT
is nonempty. Such a P + f is called a partial occurrence of P
in T. In particular, we want to find f such that (P + f) NTis
largest possible.

There are O(mn) translations f such that (P + f) N T is
nonempty, namely the translations t; — p; for 1 < j < n,
1 < i < m. Checking the size of (P + f) N T for each of
them solves the problem. A brute-force algorithm would typi-
cally need time O(m?nlogn) for this. We will give a simple
algorithm that will do this during m simultaneous scans over T'
in time O(mnlogm).

Lemma 2 The size of (P + f) N T equals the number of dis-
joint pairs (7,7) (i.e., pairs sharing no elements) such that

f=tj—pi

Proof. Immediate. O

By Lemma 2, to find the size of any non-empty (P + f) N T
it suffices to count the multiplicities of the translation vectors
fii = t; — p;. This can be done fast by first sorting them and
then counting. However, we can avoid full sorting by observing
that translations fy;, f2i, - - -, fn; are in the lexicographic order
for any fixed ¢. This sorted sequence of translations can be gen-
erated in a traversal over . By m simultaneous traversals we
get these sorted sequences for all 1 < ¢ < m. Merging them

on-the-fly into the sorted order, and counting the multiplicities
solves our problem.

The detailed implementation is very standard. As in Algorithm
1, we let g1, go, . . ., g, refer to the entries of T. Initially each
of g; refersto ¢1, and it is also convenient to set ¢,,41 « oo. The
translations f; = g; — p; are kept in a priority queue F'. Opera-
tion min(F') gives the lexicographically smallest of translations
fi» 1 <4 < m. Operation update(F") deletes the minimum el-
ement from F, let it be f;, = g, — px, updates g5, + next(qp),
and finally inserts the new f, = ¢, — py, into F.

Then the body of the pattern matching algorithm is as given
below.

(1) f+ —0;c+0;

do
2 f'« min(F); update(F)
(3) if f/=fthenc+c+1
4) else {output(f,c); f < f';c+ 1}

(5) until f =00

The algorithm reports all (f,c) such that [(P+ f) NT| = ¢
where ¢ > 0.

The running time of the algorithm is O(mnlogm). The m-
fold traversal of T takes mn steps, and the operations on the m
element priority queue F take time O(log m) at each step of the
traversal.

The above method finds all partial occurrences of P indepen-
dently of their size. Concentrating on large partial occurrences
gives possibilities for faster practical algorithms based on filtra-
tion. We now sketch such a method. Let [(P+ f) NT| = ¢

and k = m — c. Then P + f is called an occurrence with k&
mismatches.

We want to find all P + f that have at most & mismatches for
some fixed value k. Then we partition P into k + 1 disjoint
subsets Py, ..., Pry1 Of (about) equal size. The following sim-
ple fact which has been observed earlier in different variants in
string matching literature will give our filter.

Lemma 3 If P + f is an occurrence of P with at most k mis-
matches then P, + f must be an occurrence of P, with no
mismatches at least forone h, 1 < h <k + 1,

Proof. By contradiction: If every P, + f has at least 1 mis-
match then P + f must have at least k¥ + 1 mismatches as P + f
is a union of disjoint line segment patterns P, + f. O

This gives the following filtration procedure: First (the filtration
phase) find by Algorithm 1 of Section 3 all (exact) occurrences
P, + f of each Py,. Then (the checking phase) find for each f
produced by the first phase, in the ascending order of the trans-
lations f, how many mismatches each P + f has.

The filtration phase takes time O(mn), sorting the translations
takes O(r log k) where r < (k + 1)n is the number of transla-
tions the filter finds, and checking using an algorithm similar to
the algorithm given previously in this section (but now priority
queue is not needed) takes time O(m(n + r)). It should again
be obvious, that the expected performance can be much better
whenever & is relatively small as compared to m. Then the fil-
tration would take expected time O(kn). This would dominate



the total running time for small » if the checking is implemented
carefully.

5 Longest common time

Let us denote the line segments of P and T' by m; = [p;, p;] and
7j = [t;,t}], respectively.

Our problem in this section is to find a translation f such that
the line segments of P + f intersects T' as much as possible.
For any horizontal line segments L and M, let ¢(L, M) denote
the length of their intersection line segment L N M. Then let

C(f) = D clmi+f,7)

2

Our problem is to maximize this function. C(f) is nonzero
only if the vertical component f, of f = (f,, f,) brings some
m; to the same vertical position as some 7;, i.e., only if f, =
(tj)y — (pi)y for somes, j.

Let H be the set of different values (¢;), — (pi), for1 <i <m,
1 < j < n. Note that H is a standard set, not a multiset; the
size of H is O(mn).

As C(f) gets maximum when f,, € H we obtain that

mgxc(f) = H}gX{C((fz,fy)) | fyeH}. (1)

We will now explicitly construct the function C((fz, fy)) =
Cy, (fz) for all fixed f, € H. To this end, assume that
fy = (tj)y — (pi)y and consider the value of c;;(f,) =
c(mi + (fz, fy), 7). This is the contribution of the intersection
of m;+(fz, f) and 7; to the value of C'y, (f). The followingel-
ementary analysis characterizes the behaviour of ¢;;(f;) when
fz grows, i.e., when m; + (fz, fy) slides from left to right and its
intersection with 7; is first empty, then starts growing, then stays
the same until starts shrinking and finally gets again empty.
When f, is small enough, c;;(f,) equals 0. When f, grows,
at some point the end point of 7; + (f, fy) meets the starting
point of 7; and then ¢;;(f,) starts to grow linearly with slope 1
until the starting points and the end points of m; + (fs, f,) and
7; meet, whichever comes first. After that, c;;(f;) has a con-
stant value (minimum of the lengths of the two line segments)
until the starting points or the end points (i.e., the remaining
pair of the two alternatives) meet, from which pointon, ¢;; (fz)
decreases linearly with slope —1 until it becomes zero at the
point where the starting point of r; hits the end point of 7;. An
easy exercise shows that the only turning points of ¢;;(f;) are
the four points described above and their values are

fz = (tJ)Z - (p;)iﬂ
fo =min ((t;)s — (Pi)as (t5)z — ®})z)
fo = (t5)e = (Pi)a

Hence the slope changes by +1 at the first and the last turning

point, while it changes by —1 at the second and the third turning
point.

slope 1 starts
slope 0 starts
slope —1 starts
slope 0 starts.

Now, Cy, (fz) = >, ; ¢ij(fz), hence Cy, is asum of piecewise
linear continuous functions and therefore it gets its maximum
value at some turning point of the ¢;;s. Let g be a turning point,
and the value associated to it is the corresponding horizontal

transposition. Moreover, let G, = {g1 < g2 < --- < gx} be
the multiset of the turning points ordered in increasing order;
note that distinct functions c;; may have a turning point at same
location. So, for each i, j, the four values

(tj)z - (p;)z (type 1)
(tj)z - (pz)z (type 2)
(t3)z — ()= (type 3)
(t3)z — (Pi)z (type 4)

are in the lists of the Gs, and each knows its “type” shown
above.

To evaluate Cy, (f) at its all turning points we scan the turning
points g, and keep track of the changes of the slope of the func-
tion Cy,. Then it is easy to evaluate C¥, (f,) at the next turning
point from its value at the previous one. Let v be the previous
value and let s represent the slope and let best store the largest
value. The evaluation is given below.

(1) v+ 0;5+ 0;best «+ 0
(2) fork+1,...,Kdo

®3) v+ v+ 8(gk — gr-1)

4 if gr isoftype 1 ortype4thens «+ s+ 1
(5) else s + s — 1.

(6) if v > best then best «+ v

This should be repeated for all different f, € H. We next de-
scribe a method that generates the turning points in increasing
order simultaneously for all different f,,. The method will tra-
verse T using four pointers (the four “types”) per an element of
P. A priority queue is again used for sorting the translations
given by the 4m pointers; the z-coordinates of the translations
then give the turning points in ascending order. At each turning
point we update the counters vy, and s;, where h is given by the
y-coordinate of the translation.

We need two traversal orders of T'. The first is the one we have
used so far, the lexicographic order of the starting points ¢;.
This order is given as T. The second order is the lexicographic

order of the end points ¢’;. Let T' be the end points in the sorted
order.

Let g},q2,q3, and g} be the pointers of the four types, associ-
ated with element m; of P. Pointers g} and ¢? traverse 7', and

pointers ¢? and g} traverse T'. The translation associated with
the current value of each pointer is given as

tr(g;) =qi —pi  tr(q})=q; —pi
tr(g;) =q; —p;  tr(q}) =q; — pi-

So, when the pointers refer to ¢; or t’;, the z-coordinate of these
translations give the turning points, of types 1, 2, 3, and 4, asso-
ciated with the intersection of «; and 7;. The y-coordinate gives
the vertical translation (¢;), — (p;)y that is needed to classify
the turning points correctly.

During the traversal, all 4m translations ¢r given by the 4m
pointers are kept in a priority queue. By repeatedly extract-
ing the minimum from the queue (and updating the pointer that
gives this minimum ¢r) we get the translations in ascending lex-
icographic order, and hence the z-coordinate of the translations
gives all turning points in ascending order.

Let f = (fz, fy) be the next translation obtained in this way.
Then we retrieve the slope counter s;, and the value counter
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Figure 3: Experimenting on the length of the query pattern. To the left, comparing P1 vs. P2; to the right P2 vs. P3, S1A(M)E; and

SIA(M)E,.

vy, . Assuming that we have also stored the last turning point
zy, atwhich vy, was updated, we can now perform the follow-
ing updates. If f, # z;,, then let vy, + vy, + sz, (f2 — 21,)
and zy, + f;. Moreover, if f is of types 1 or 4, then let
sy, « sy, + 1 otherwise sy, < sy, — 1.

In this way we obtain the values v, for each function C}, and
each h € H, at each turning point. By (1), the maximum value
of C' must be among them.

The described procedure needs O(nlogn) time for sorting

T into T and T', and O(mnlogm) time for generating the
O(mn) turning points in increasing order. At each turning point
we have to retrieve the corresponding slope and value counters
using the vertical translation h € H as the search key. Since
we are dealing with MIDI intervals, |[H| < 255 (independently
of m and n), we can use bucketing to manage these counters.
This gives a total time requirement O(n log n + mn logm) and
space requirement O(m + n).

Let us finally point out an anomaly of our algorithm. It is quite
common that a note occurs several times simultaneously on dif-
ferent tracks (instruments). Then it is possible that our algo-
rithm finds occurrences whose length is larger than the total
length of the line segments of P, because a line segment of
P can intersect several line segments of T' simultaneously. For-
mally, however, the algorithm solves problem (P3) as we de-
fined. It is rather easy to remove the anomaly: just replace any
overlapping line segments in P and T by one long segment cov-
ering their joint time intervals. Another possibility, which does
not destroy the original structure, is to insist that the overlaps
between P and T that are counted to the common time must
be one-to-one (instead of many-to-one or one-to-many). This
can be achieved using appropriate counters associated with each
line segment of P.

6 Experiments

We made brief experiments on our algorithms solving problems
(P1), (P2), and (P3). Let us call the algorithms P1, P2, and
P3, respectively. To have something to compare with, we im-
plemented the SIA(M)E; and SIA(M)E; algorithms (Meredith

et al., 2001; Wiggins et al., 2003). SIA(M)E; uses hashing ! to
maintain the translation vectors in order and has a worst case
time bound of O((mn)?) but works in time O(mn) on the av-
erage. SIA(M)E; merges sorted sets of translation vectors and
has a worst case time bound of O(mn log(mn)). In the exper-
iments, we used the database of the Mutopia project 2. For the
experiments we created 10 copies of it. So, in total our database
contained 2790 musical documents that comprised 1,215,520
chords and 2,158,840 notes. The degree of polyphony within
the database is 1.78 on the average (max 15).

First, we studied the difference in performances of P1 and P2,
and then those of the four algorithms, P2, P3, SIA(M)E, and
SIA(M)E,, capable of dealing with approximate matching. Re-
call that P2, SIA(M)E;, and SIA(M)E. solve problem (P2)
(while P3 solves problem (P3)). The experiments were carried
out in a PC with Intel Pentium IV of 2.26GHz and 1 GB of
RAM under a modified RedHat Linux with kernel 2.4.18 and
gcc compiler 3.2.2.

We experimented on different lengths of query patterns for it
is the more interesting parameter out of the parameters m and
n. The range of considered lengths was [2,19] that, we claim,
covers the lengths of the patterns normally used in query by
humming applications.

At each considered length, 25 query patterns were randomly
picked up from the database. Thus, it was guaranteed that at
least one occurrence was to be found with each possible query.
The times we report are the averages of the 25 repetitions of
each considered query pattern length. We measured the true,
elapsed times for carrying out the query tasks.

Fig. 3 gives the running times of our experiments. First, con-
sider the problem (P1). The first plot (to the left) confirms that
P1 can be expected to run independently of m. Therefore, P1 is
a useful algorithm that should be included in an content-based
music retrieval query engine for the cases when exact occur-
rences need to be found in a large database, although P2 can be
used for the task, as well.

1We used ahashing table of size 2 x m x n, as suggested by Wiggins
et al. (2003).
2http://www.mutopi aproject.org/



The second plot illustrates, that there is no significant differ-
ences in the behaviour of the three algorithms capable of solv-
ing (P2) 3. However, out of those three, P2 seems to slightly
outperform SIA(M)E; and SIA(M)E; in this experiment. Re-
call that P2 needs only O(m) space in contrast to the O(nm)
space for the hashing table  required by SIA(M)E;. Moreover,
if the size of the hashing table used by SiA(M)E; needs to be
diminished, the quadratic time behaviour O((mn)?) becomes
prevailing.

P3 is rather clearly outperformed by the three algorithms solv-
ing (P2). However, there is no doubt about its usefulness. To
our knowledge it is the only algorithm capable of solving prob-
lem (P3).

7 Conclusion

We presented efficient algorithms for transposition invariant
content-based retrieval on polyphonic music. The algorithms
adapt themselves to different variations of the problems such as
to weighted matching or to patterns that consist of rectangles
instead of line segments. The presented algorithms have been
implemented and embedded in our C-BRAHMS engine avail-
able at http://www.cs.helsinki.fi/group/cbrahms/demoengine/.
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