Automatic Synchronization of Music Data in Score-, MIDI- and PCM-Format

Vlora Arifi, Michael Clausen, Frank Kurth, and Meinard Müller

University of Bonn, Germany – Department of Computer Science III {vlora, clausen, frank, meinard}@cs.bonn.edu, http://www-mmdb.iai.uni-bonn.de

1 Problem Setting: Synchronization

Synchronization task: Given a (time-) position in some representation of a piece of music (e.g., in score or MIDI format), determine the corresponding position within some other representation (e.g., given in PCM-format).

Example: Consider score-, PCM (waveform)-, and MIDI versions of the first $4\frac{1}{3}$ measures of the $Aria\ con\ Variazioni\ by\ J.\ S.\ Bach,\ BWV\ 988:$

The red arrows link the corresponding events of the different versions. Based on those three typical music representations, we may consider the following types of synchronization tasks:

In this poster, we shall only consider Score-to-PCM (SP-) synchronization.

Applications:

- Automatic annotation of a piece of music available in different data formats as a basis for content-based retrieval.
- Usage of link structures to access PCM audio piece accurately after score-based music retrieval.
- Investigation of agogic and tempo studies.

Synchronization proceeds in three steps:

suitable cost function (Section 5.2).

1. Extract note parameters from the PCM (Section 3).

2. Preprocess score to normalized representation (Section 4).

• Automatic tracking of the score positions during a performance.

Overview: Synchronization Framework

3. Synchronize extracted note parameters and score (Section 5.3) w.r.t.

3 Extraction of Note Parameters

Onset detection:

- Track changes of signal's frequency contents over time using novelty curves.
- Refine time-resolution of resulting estimated onset positions using linear prediction (following Foster et al. (1982)).

Pitch extraction:

- Subband analysis using tree-structured multirate filterbank adapted to musical scale (at most one note per subband) following Bobrek et al. (1998).
- Establish note positions in subbands using detected onset positions.
- Estimate pitches using template-matching.

Example: (cont'd)

Attacks extracted after two-stage peak picking:

Note parameters output by feature extraction (piano roll format):

4 Data Modeling

After suitable (time-) quantization, we distinguish two types of score-based note objects:

- 1. Explicit notes: all time- and pitch parameters are given explicitly
- 2. Implicit notes: notes with special properties, e.g., trill or arpeggio

 → different realizations allowed

Example: Two implicit notes, appoggiatura and trill (left), possible realizations (center), implicit notes modeled by fuzzy notes (right).

Fuzzy note = onset time + set of alternative pitches

5 Synchronization Algorithm

5.1 Score-PCM Matches

Assume that score and Δ -quantized extracted PCM-data are given by the sets

$$S = [(s_1, S_{01}, S_{11}), \dots, (s_s, S_{0s}, S_{1s})]$$

and

$$P_{\Delta} = [(p_1, P_{01}), \dots, (p_p, P_{0p})].$$

- s_i : musical onset times,
- p_j : quantized physical onset times,
- S_{0i} , S_{1i} : sets of pitches for the explicit and implicit notes (score),
- P_{0j} : sets of pitches for the (only explicit!) notes (PCM).

Definition 5.1. A Score-PCM match (SP-match) of S and P_{Δ} is defined to be a partial map $\mu \colon [1 \colon s] \to [1 \colon p]$, which is strictly monotonously increasing on its domain satisfying for all $i \in \text{Domain}(\mu) \colon (S_{0i} \cup S_{1i}) \cap P_{0\mu(i)} \neq \emptyset$.

5.2 Cost Functions For SP-Matches

Definition 5.2. Let $\pi := (\alpha, \beta, \gamma, \delta, \zeta, \Delta) \in \mathbb{R}^6_{\geq 0}$ be a parameter vector. Then the SP-cost of an SP-match μ w.r.t. π between some score S and some Δ -quantized set P_{Δ} of the corresponding PCM-document is defined as

$$C_{\pi}^{\mathrm{SP}}(\mu|S, P_{\Delta}) := \alpha \cdot \sum_{(i,j) \in \mu} \left(\left| S_{0i} \setminus P_{0j} \right| + \lambda(i,j) \right)$$

$$+\beta \cdot \sum_{(i,j) \in \mu} \left(\left| P_{0j} \setminus (S_{0i} \cup S_{1i}) \right| + \rho(i,j) \right)$$

$$+\gamma \cdot \sum_{k \notin \mathrm{Domain}(\mu)} \left(\left| S_{0k} \right| + \sigma(k) \right)$$

$$+\delta \cdot \sum_{t \notin \mathrm{Image}(\mu)} \left| P_{0t} \right|$$

$$+\zeta \cdot \sum_{(i,j) \in \mu} \left| s_i - p_j \cdot \ell(S) / \ell(P) \right|.$$

The single terms account for the following costs:

 α -term: non-matched explicit and implicit note objects of the score $S(\lambda(i,j)) = 1$ if S has an implicit object at i unmatched by P_{Δ} at j, $\lambda(i,j) = 0$ otherwise),

 β -term: extracted notes not contained in the score; $\rho(i,j) = |P_{0j} \cap S_{1i}| - 1$ if $P_{0j} \cap S_{1i} \neq \emptyset$ and zero otherwise, i.e., for implicit note objects, only one match is free of cost,

 γ -term: onset times of the score not belonging to the match μ ,

 δ -term: notes in P_{Λ} not having a counterpart in S,

 ζ -term: penalizes matches with large relative time deviations.

 $(\ell(S) \text{ and } \ell(P))$: differences of last and first musical respectively physical onset times)

Important observation:

If μ is an SP-match then also $\mu' := \mu \setminus \{(i,j)\}$ for some $(i,j) \in \mu$. Hence

$$C_{\pi}^{\mathrm{SP}}(\mu|S, P_{\Delta}) - C_{\pi}^{\mathrm{SP}}(\mu'|S, P_{\Delta}) = \alpha \cdot \left(\left| S_{0i} \setminus P_{0j} \right| + \lambda(i, j) \right) + \beta \cdot \left(\left| P_{0j} \setminus (S_{0i} \cup S_{1i}) \right| + \rho(i, j) \right) - \gamma \cdot \left(\left| S_{0i} \right| + \sigma(i) \right) - \delta \cdot \left| P_{0j} \right| + \zeta \cdot \left| s_i - p_j \cdot \ell(S) / \ell(P) \right|.$$
(1)

5.3 Cost-Optimal SP-Matches

Determine cost-minimizing SP-match using dynamic programming: Recursively define a matrix $C = (c_{ij})$ with $i \in [0:s]$ and $j \in [0:p]$,

- 1. Initialize $c_{0j} := c_{i0} := C_{\pi}^{SP}(\emptyset|S, P_{\Delta})$ for all $i \in [0:s], j \in [0:p]$.

 (costs for the case that there is no match at all between S and P_{Δ})
- 2. For $(i, j) \in [1:s] \times [1:p]$,

$$c_{ij} := \min\{c_{i,j-1}, c_{i-1,j}, c_{i-1,j-1} + d_{ij}^{SP}\},$$

where

$$d_{ij}^{\mathrm{SP}} := \begin{cases} \text{right hand side of Eq. (1)}, & \text{if } (S_{0i} \cup S_{1i}) \cap P_{0j} \neq 0, \\ 0, & \text{otherwise.} \end{cases}$$

By (1), c_{ij} is cost for a cost-minimizing SP-match in $[1:i] \times [1:j] \subset [1:s] \times [1:p]$.

Hence, c_{sp} expresses the minimal cost of a global SP-match.

6 An Example

Score-based note objects S for first two measures of the Aria (left) and quantized note parameters P_{Δ} extracted from a PCM version (right):

	,	P_{Δ}				
i	s_i	S_{0i}	S_{1i}	j	p_j	P_{0j}
1	0	${55, 79}$	\emptyset	1	0	${55, 67}$
2	1	${59, 79}$	$ \emptyset $	2	1.23	${59, 79}$
3	2	{62}	$\{79, 81\}$	3	2.44	${55, 62}$
				4	2.56	$\{62, 79\}$
				5	2.68	$\{62, 81\}$
4	2.75	{83}	$ \emptyset $	6	3.58	{83}
5	3	$\{54, 81\}$	$ \emptyset $	7	3.86	${54, 66}$
6	3.5	$ \emptyset $	${78,79}$	8	4.47	{79}
				9	4.75	{78}
7	4	{57}	${74, 76}$	10	5.06	$\{57, 76\}$
				11	5.71	{74}
8	5	{62}	\emptyset	12	6.39	$\{57, 62\}$

Corresponding cost matrix:

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	102	102	102	102	102	102	102	102	102	102	102	102	102
1	102	98	98	98	98	98	98	98	98	98	98	98	98
2	102	98	94	94	94	94	94	94	94	94	94	94	94
3	102	98	94	90	90	90	90	90	90	90	90	90	90
4	102	98	94	90	90	90	88	88	88	88	88	88	88
5	102	98	94	90	90	88	88	85	85	85	85	85	85
6	102	98	94	90	88	88	88	85	83	83	83	83	83
7	102	98	94	90	88	88	88	85	83	83	7 9	79	79
8	102	98	94	90	88	86	86	85	83	83	79	79	77

Cost matrix C and a cost-minimizing SP-match (for first $4\frac{1}{3}$ measures):

7 Conclusions

- ◆ Tests on a variety of classical polyphonic piano pieces (lengths 10 60 secs) played on various instruments yield good results.
- Crucial: Choice of parameter vector π in cost function.