A Large-Scale Evaluation of Acoustic and Subjective Music Similarity Measures

Adam Berenzweig

Dan Ellis

Beth Logan

Brian Whitman

LabROSA Columbia University **HP** Labs

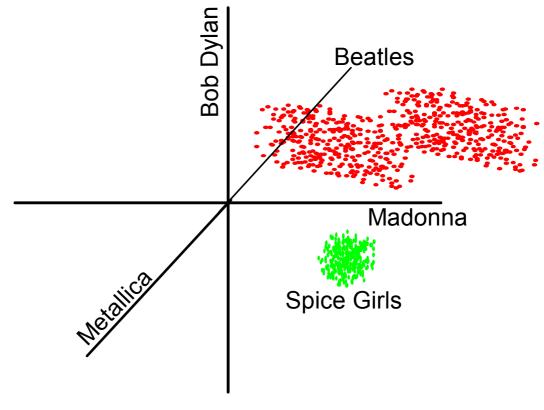
Music, Mind & Machines
MIT Media Lab

Motivation

- Similarity is at the heart of:
 - Classification
 - Content-based Music Information Retrieval
 - Recommendation
 - Similarity Browsing
- Similarity? says who? (Evaluation is hard.)
 - Subjective
 - Context-dependent (mood, time of day)
 - Similarity how? rhythm, melody, singing voice, lyrics?

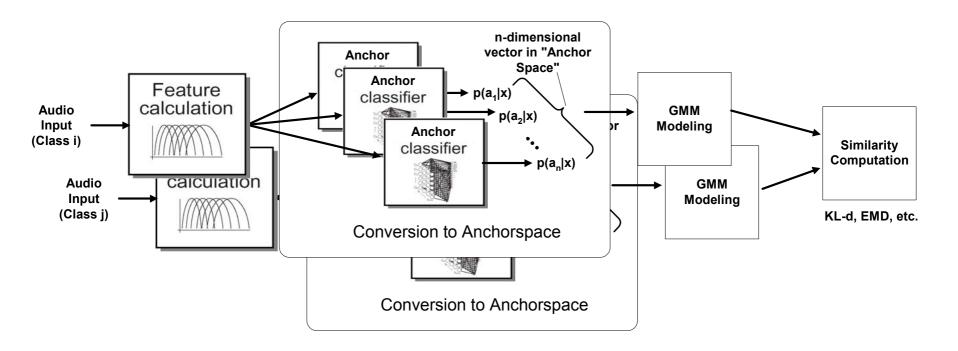
Evaluation

- Music IR needs TREC-like framework: Common corpus, common evaluation.
 - Acoustic data. Copyright Hell.
 - Evaluation methodology. "The quest for ground truth continues"
- Our solution:
 - Truth = Aggregate various sources of human subjective judgments
 - Share features, not music.


- Acoustic Measures
- Subjective Measures
- Scoring Methods
- Results

Feature Space

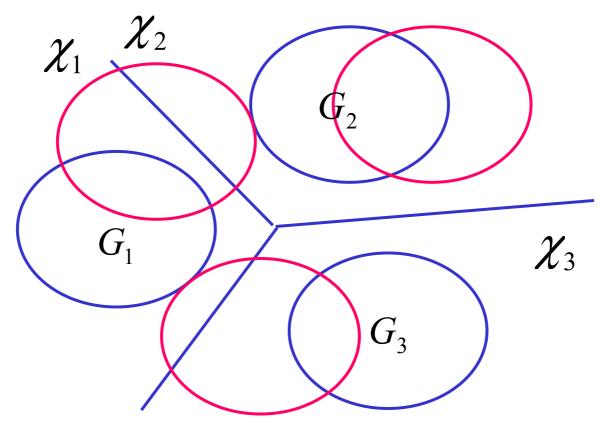
- Artists/Songs are distributions, not points.
 - Model with GMMs
 - Each frame of audio (32 milliseconds) is a point.



MFCC Clustering

- Logan & Salomon, ICME 2001
- MFCC features
- K-means clustering as pseudo-EM, per song or artist
- Earth-mover's distance (EMD) to compare distributions

Anchor Space



Comparing Clouds

- Centroid distance
- GMMs
 - KL-divergence? No closed form. So:
 - Likelihood of samples
 - Earth Mover's Distance (Rubner 98)
 - Asymptotic Likelihood Approximation (Vasconcelos 01)

ALA

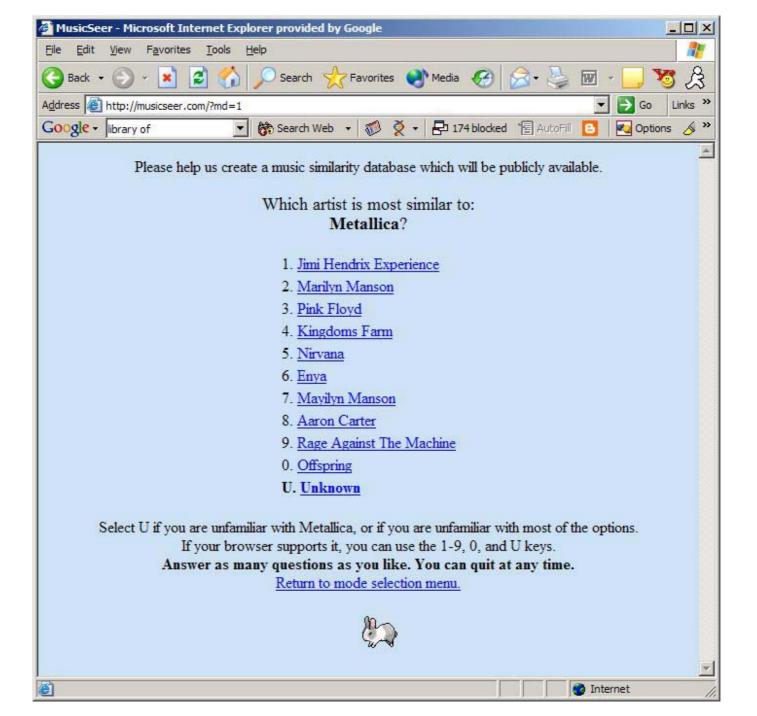
Acoustic Data

- www.ee.columbia.edu/~dpwe/research/musicsim
- 400 artists
 - Most popular artists on OpenNap mid-2002
 - Overlap with "Art of the Mix" playlist data early 2003
- 8827 songs, average 22 per artist
 - Coverage not equal for all artists
 - − ~35G of mp3, 11G of MFCC data

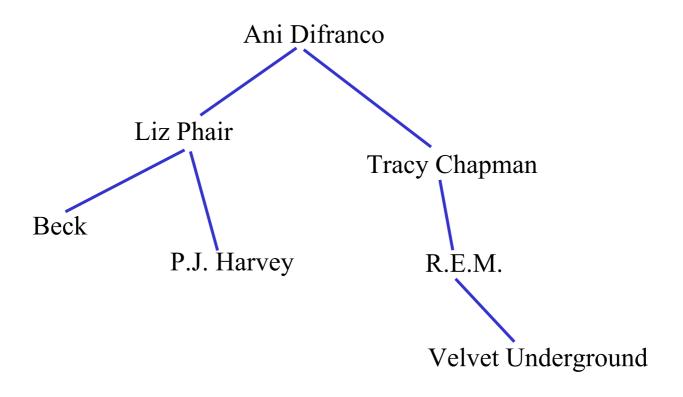
Sharing Data

- Due to copyright, share MFCC features, not audio.
- Can add new features in future:
 - authors submit code for feature extraction
 - Columbia runs it over the data, shares feature output

- Acoustic Measures
- Subjective Measures
- Scoring Methods
- Results
- Study Proposal



Sources of Human Opinion


- Ask Directly
 - Survey
 - Experts: All Music Guide
- Infer from co-occurrence
 - User collections: OpenNap servers
 - Playlists: Art of the Mix
- Text
 - Web sites that discuss, describe artists

Fleshing out expert opinion: Erdos distance

WebText

- Compare the language used to describe artists.
- Whitman & Lawrence, ICMC 2002
 - Google search for band name
 - Bag-of-words vector similarity

User Collections and Playlists

- OpenNap servers.
- Art of the Mix
- Related to Collaborative Filtering
 - users who have X also have Y

Co-occurrence Similarity

- Compute co-occurrence matrix, rows are p(x|y)
- Normalize by prior p(x): related to Mutal Information

$$co(x, y) = \frac{p(x|y)}{p(x)} = \frac{p(x,y)}{p(x)p(y)}$$

$$I(X;Y) = E_{p(x,y)} \log \frac{p(x,y)}{p(x)p(y)} = E_{p(x,y)} \log co(x,y)$$

Used for playlists (AOTM) and collections (OpenNap)

Data Stats

Survey Data

- 22, 300 responses from users to questions about the 400 artists
- 'Given artist a, which of the 10 presented artists is closest?'

Expert Opinion

- similar artist lists from All Music Guide (<u>www.allmusic.com</u>)
- average of 5.4 similar artists per list

OpenNap User Collections

- co-occurrence data from 3200 user collections
- 175, 000 user-to-artist relations

• Art of the Mix Playlists

- co-occurrence data from 23000 playlists
- average of 4.4 entries per playlist

Other data

again, we encourage other groups to submit data

Sparsity

Source	# obs	art/obs	> 0 obs	$\geq 10~{ m obs}$	med#art
Survey	17,104	5.54	7.49%	0.36%	23
Expert	400	5.41	1.35%	-	5
Playlist	23,111	4.38	51.4%	11.4%	213
Collection	3,245	54.3	94.1%	72.1%	388

- Only some subset of pairs are directly compared.
 - Too dissimilar
 - Artist unknown
 - Exception: acoustic data! can do all n² compares.
- How does it affect results?
 - Evaluation method should be agnostic wrt sparsity.

- Acoustic Measures
- Subjective Measures
- Scoring Methods
- Results
- Study Proposal

Scoring Methods

- Survey-based: Ask the metric the same questions we asked users
 - Average rank agreement
 - First-place agreement
- Cross-reference Evaluation
 - Compare two similarity matrices
 - Any similarity matrix can be considered truth.
 - Top-N agreement

Survey-based Evaluation: Average Rank

Which artist is most similar to Sheryl Crow?

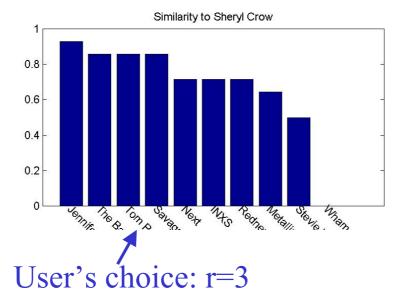
Wham

Metallica

Savage Garden

Rednex

Stevie Wonder


The Bangles

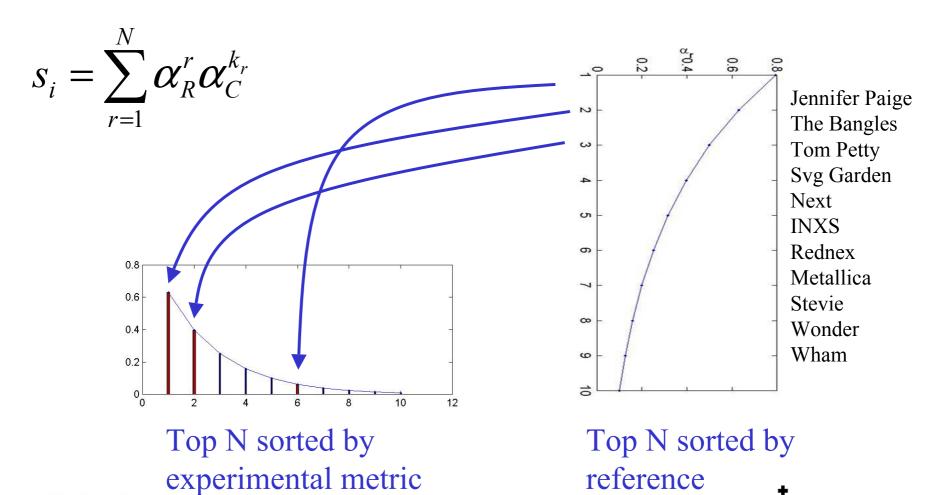
INXS

Jennifer Paige

Next

Ordered by the metric

•Normalize to [1,10]


$$R = 1 + \frac{(r-1)(10-1)}{N-1}$$

- •Then average over all judgements.
- •Random=5.5
- •Optimal ~ 2.13

Top-N Reference Ranking

Berenzweig et al

Scoring Methods

- Survey-based: Ask the metric the same questions we asked users
 - Average rank agreement
 - First-place agreement
 - statistical significance: one-tailed binomial test (1% at 5%)
- Cross-reference Evaluation
 - Compare two similarity matrices
 - Any similarity matrix can be considered truth.
 - Top-N agreement

- Acoustic Measures
- Subjective Measures
- Scoring Methods
- Results
- Study Proposal

Searching Parameter Space: MFCC

			Independent		Pooled		
	#mix	c0?	ALA	EMD	ALA	Cntrd	EMD
EM	8	У	4.76 / 16%	4.46 / 20%	4.72 / 17%	4.66 / 20%	4.30 / 21%
	8	n	-	4.37 / 22%	-	-	4.23 / 22%
	16	n	-	4.37 / 22%	-	-	4.21 / 21%
K-means	8	У	-	4.64 / 18%	-	-	4.30 / 22%
	8	n	4.70 / 16%	4.30 / 22%	4.76 / 17%	4.37 / 20%	4.28 / 21%
	16	У	-	4.75 / 18%	-	-	4.25 / 22%
	16	n	4.58 / 18%	4.25 / 22%	4.75 / 17%	4.37 / 20%	4.20 / 22%
	32	n	-	-	4.73 / 17%	4.37 / 20%	4.15 / 23%
	64	n	-	-	4.73 / 17%	4.37 / 20%	4.14 / 23%
Optimal					2.13 / 53.5%		
Random					5.50 / 11.4%		

- Pooled covariance, no c0 (energy), more mixture components are better, up to 32.
- K-means comparable to EM, and computationally simpler.
- EMD is best; but for Anchor Space, ALA.
 - ALA assumptions fail in MFCC space?

Berenzweig et al

Lab

Searching Parameter Space: Anchorspace

- Full, independent covariance
- All 14 dimensions
- ALA

Results

- Compare two different acoustic distance measures
 - Local K-means clustering of MFCC features (Logan & Salomon)
 - GMM clustering of features in Anchor Space
- Search parameter space with survey as ground truth
- Scoring is survey-based
 - Average rank response / % 1st-place agreement

#mix	MFCC	Anchor
8	4.28/21.3%	4.25/20.2%
16	4.20/22.2%	4.20/19.8%

<u>a</u>

Cross-Reference Results

• What's best ground truth? pairwise comparisons between measures

	1st place	survey	expert	playlist	collection	webtext
Random	11.8%	0.015	0.020	0.015	0.017	0.012
Anchor	19.8%	0.092	0.095	0.117	0.097	0.041
MFCC	22.2%	0.112	0.099	0.142	0.116	0.046
Survey	53.5%	0.874	0.249	0.204	0.331	0.121
Expert	27.9%	0.267	0.710	0.193	0.182	0.077
Playlist	26.5%	0.222	0.186	0.985	0.226	0.075
Collection	23.2%	0.355	0.179	0.224	0.993	0.083
Webtext	18.5%	0.131	0.082	0.077	0.087	0.997
mean*		0.197	0.148	0.160	0.173	0.074

- Natural asymmetry because $\alpha_{k} \neq \alpha_{k}$
- Diagonal<1 because of random tiebreaker, sparsity
- 53% reflects low agreement between subjects

Cross-Reference Results

• What's best ground truth? pairwise comparisons between measures

	1st place	survey	expert	playlist	collection	webtext
Random	11.8%	0.015	0.020	0.015	0.017	0.012
Anchor	19.8%	0.092	0.095	0.117	0.097	0.041
MFCC	22.2%	0.112	0.099	0.142	0.116	0.046
Survey	53.5%	0.874	0.249	0.204	0.331	0.121
Expert	27.9%	0.267	0.710	0.193	0.182	0.077
Playlist	26.5%	0.222	0.186	0.985	0.226	0.075
Collection	23.2%	0.355	0.179	0.224	0.993	0.083
Webtext	18.5%	0.131	0.082	0.077	0.087	0.997
mean*		0.197	0.148	0.160	0.173	0.074

- (survey,collection) .343 [surprising!]
- (survey, expert) .258 [explicit judgments]
- (playlist,collection) .225 [co-occurrence data]
- (survey,playlist) .213

₫

Cross-Reference Results

• What's best ground truth? pairwise comparisons between measures

	1st place	survey	expert	playlist	collection	webtext
Random	11.8%	0.015	0.020	0.015	0.017	0.012
Anchor	19.8%	0.092	0.095	0.117	0.097	0.041
MFCC	22.2%	0.112	0.099	0.142	0.116	0.046
Survey	53.5%	0.874	0.249	0.204	0.331	0.121
Expert	27.9%	0.267	0.710	0.193	0.182	0.077
Playlist	26.5%	0.222	0.186	0.985	0.226	0.075
Collection	23.2%	0.355	0.179	0.224	0.993	0.083
Webtext	18.5%	0.131	0.082	0.077	0.087	0.997
mean*		0.197	0.148	0.160	0.173	0.074

- Respectable performance of acoustic measures
- Survey is best scoring mean, but sparse.
- Collection is next, and high agreement w/ survey.

<u>a</u>

Invitation

- Hosted at Columbia www.ee.columbia.edu/~dpwe/research/musicsim/
- Acoustic and Subjective data
 - 400 artists, 8827 songs, 11G of MFCC, OpenNap, Art of the mix, AMG, Survey, Webtext
- Sharing features is viable for corpus sharing. We welcome feature contributions.

Thanks!

