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Outline
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Aims

• Genre classification for standard & Latin ballroom
dance music

– common characteristics: strong beat, constant
tempo

– recognisable differences (e.g. tango, waltz, jive)

• Using temporal features only

• Comparison of methods for determining periodicities

• Evaluation of information provided by periodicities
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Musical Background

• Pulse: a regularly spaced stream of accents

• Beat: the primary pulse

• Meter: (hierarchical) grouping of pulses

• Metrical level: a level of the metrical hierarchy
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Method 1: IOI Clustering

• Single frequency band

• Onset detection

• Calculation of inter-onset intervals (IOIs)

• Clustering of IOIs (weighted IOI histogram)
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Onset detection

• 40ms windowed RMS smoothing with 75% overlap

• Find peaks in slope of envelope
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Clustering: IOI calculation

Clusters correspond to musical time units
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Clustering: Results
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Method 2: Autocorrelation

• Multiple frequency bands: 0–100Hz, then 7

logarithmically spaced bands to 22050Hz

• Amplitude envelopes: each band was rectified,

squared, decimated to 980Hz sampling rate and

smoothed with a 20Hz LP filter

• Dynamic range compression (logarithmic)

• Autocorrelation calculated for lags of 0–5 seconds
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Autocorrelation: Peak Selection

• Normalisation by peak at lag 0

• Peak at lag 0 discarded

• 3 highest peaks from each band selected

• Peaks within 20ms combined

• Peaks weighted by number of bands plus (average)

autocorrelation
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Determination of Meter and Beat

• Same method for both types of input data

• Distinguish beat and meter from other metrical levels

• Assign a musical meaning to each periodicity

• Exhaustive approach: all possible interpretations are

evaluated
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Evaluation of Meter Hypotheses

• Ratio of periodicity to beat is calculated as a simple

fraction

• Error and complexity of each fraction are estimated

• Weighted sum of periodicity weights computed for

even and odd meters

• Weights are corrected for tempo and the errors and

complexities of fractions
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Genre Classification

• Simple rule-based approach

• Based on known features of genres

• Hand-coded

• Uses tempo, meter and periodicity distribution
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Sample Rules

viennesewaltz(Meter, Tempo) :-

Meter = 3,

Tempo > 40.

slowwaltz(Meter, Tempo) :-

Meter = 3,

Tempo <= 40.

quickstep(Meter, Tempo) :-

Meter = 4,

Tempo <= 54,

Tempo > 48,

weight(3/8) <= 3.
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Test Data

• Tested with dance CDs (genre and/or tempo

specified)

• Small set (161 tracks with style specified, 96 with

tempo)

• 17 styles (several with only 1 or 2 examples)
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Results: Ranking of Periodicities

Where did the bar and beat levels appear in the rankings?

Rank: 1 2 3 4 5 6 7 8 9 none

Method 1: Bar 13 16 16 9 11 13 13 3 2 0
Clustering Beat 11 16 18 15 9 12 10 1 1 3
Method 2: Bar 19 20 25 10 13 1 1 0 0 7
Correlation Beat 30 25 20 7 4 0 0 0 0 10

The beat and bar level were ranked among the highest 10

periodicities in almost all cases.
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Results: Classification Rate

IOI-Clustering Correlation
Tempo 53/96 65/96
Meter 142/161 150/161
Style 36/52 52/65

Tzanetakis and Cook (2002) report 61% correct

classification for 10 (non-similar) genres, using features

representing timbre, rhythm and pitch

Results: Tempo Error Types

IOI-Clustering Correlation
Half tempo 4 10
Double tempo 24 16
Wrong meter 14 5
Other 1 0
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Confusion Matrix

PD SA TA SF QU RR RU SW CH BO WW FO JI MA
PD 5 - - - - - - - - - - - - -
SA - 3 - - - - - - - - - - - 1
TA - - 6 - - - - - 1 - - - - -
SF - - - 4 - - - - 1 - - - 1 -
QU - 3 - - 6 - - - - - - - - -
RR - - - - - - - - - - - - - -
RU - - 1 - - - 4 - - - - - - -
SW - - - - - - - 6 - - - - - -
CH - - - - - - - - - - - - - -
BO - - - - - - - - - - - - - -
WW - - - - - - - - - - 2 - - -
FO - - - - - - - - - - - - - -
JI - - - - - 1 - - - 2 - 2 16 -
MA - - - - - - - - - - - - - -
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Current (Future) Work

• Analysis of sequences of events

• Estimation of metrical boundaries

• Encoding and catalaguing temporal patterns

• Similarity and genre estimation based on these

patterns

• Machine learning of categories (more data required)
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