Classification of Dance Music by Periodicity Patterns

Simon Dixon Austrian Research Institute for AI, Vienna

http://www.oefai.at/~simon
http://www.oefai.at/music

Outline

- Aims
- Musical Background
- Periodicity Detection
 - IOI Clustering
 (Dixon, Goebl & Widmer, ICMAI2002)
 - Bandwise Autocorrelation
 (Paulus & Klapuri, ISMIR2002)
- Experimental Results
- Current and Future Work

Aims

- Genre classification for standard & Latin ballroom dance music
 - common characteristics: strong beat, constant tempo
 - recognisable differences (e.g. tango, waltz, jive)
- Using temporal features only
- Comparison of methods for determining periodicities
- Evaluation of information provided by periodicities

Musical Background

- Pulse: a regularly spaced stream of accents
- Beat: the primary pulse
- Meter: (hierarchical) grouping of pulses
- Metrical level: a level of the metrical hierarchy

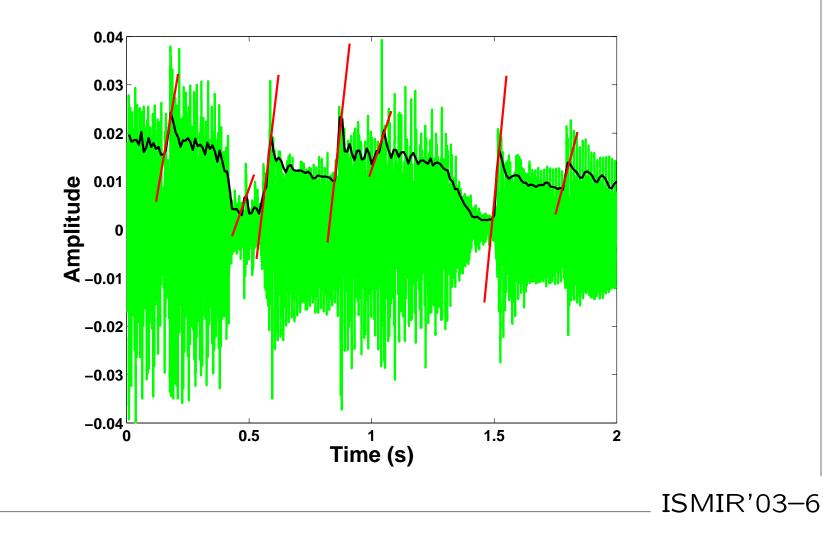
Method 1: IOI Clustering

- Single frequency band
- Onset detection
- Calculation of inter-onset intervals (IOIs)
- Clustering of IOIs (weighted IOI histogram)

Onset detection

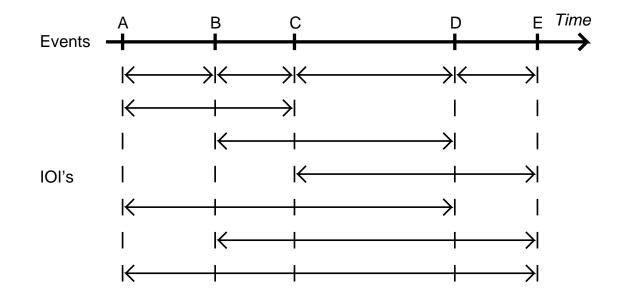
- 40ms windowed RMS smoothing with 75% overlap
- Find peaks in slope of envelope

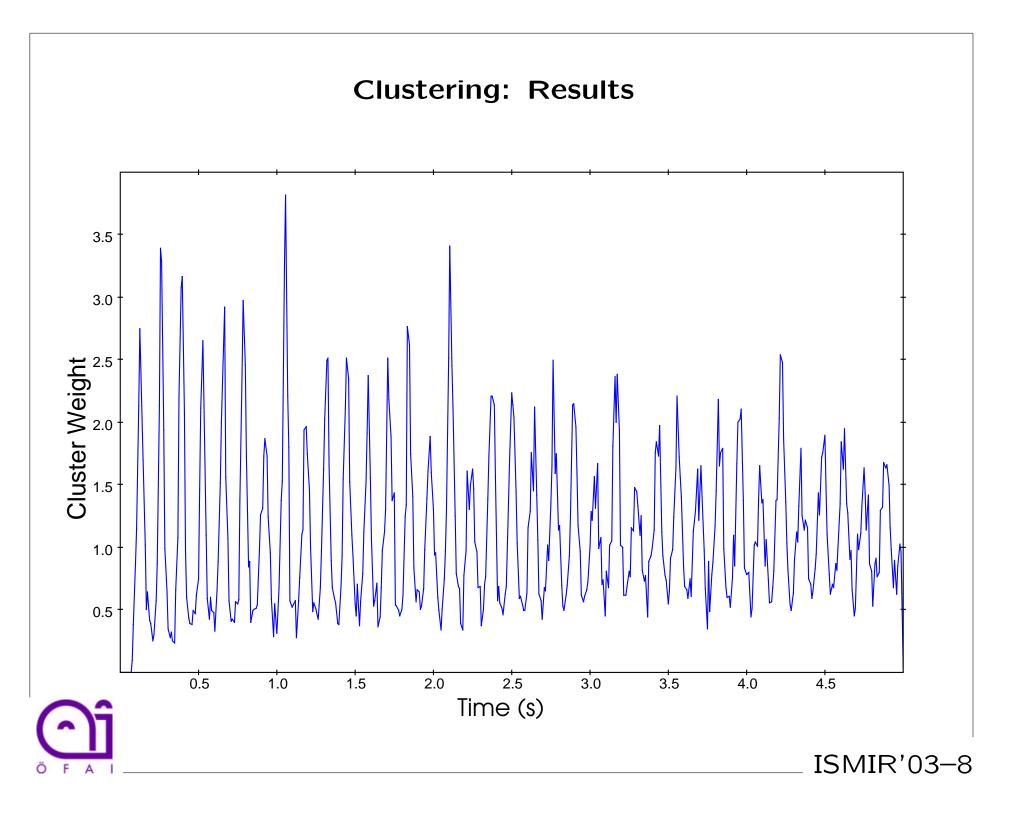
Õ



Clustering: IOI calculation

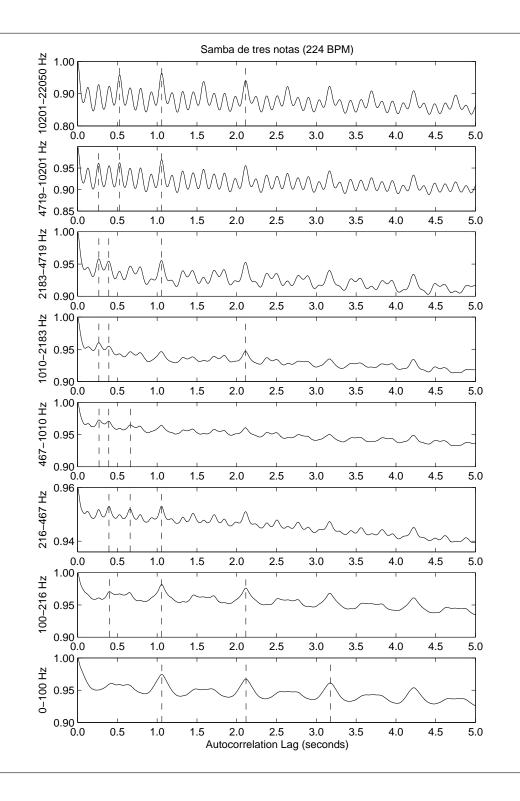
Clusters correspond to musical time units





Method 2: Autocorrelation

- Multiple frequency bands: 0–100Hz, then 7 logarithmically spaced bands to 22050Hz
- Amplitude envelopes: each band was rectified, squared, decimated to 980Hz sampling rate and smoothed with a 20Hz LP filter
- Dynamic range compression (logarithmic)
- Autocorrelation calculated for lags of 0-5 seconds



ÖFA

ISMIR'03-10

Autocorrelation: Peak Selection

- Normalisation by peak at lag 0
- Peak at lag 0 discarded
- 3 highest peaks from each band selected
- Peaks within 20ms combined
- Peaks weighted by number of bands plus (average) autocorrelation

Determination of Meter and Beat

- Same method for both types of input data
- Distinguish beat and meter from other metrical levels
- Assign a musical meaning to each periodicity
- Exhaustive approach: all possible interpretations are evaluated

Evaluation of Meter Hypotheses

- Ratio of periodicity to beat is calculated as a simple fraction
- Error and complexity of each fraction are estimated
- Weighted sum of periodicity weights computed for even and odd meters
- Weights are corrected for tempo and the errors and complexities of fractions

Genre Classification

- Simple rule-based approach
- Based on known features of genres
- Hand-coded
- Uses tempo, meter and periodicity distribution

Sample Rules

```
viennesewaltz(Meter, Tempo) :-
        Meter = 3,
        Tempo > 40.
slowwaltz(Meter, Tempo) :-
        Meter = 3,
        Tempo <= 40.
quickstep(Meter, Tempo) :-
        Meter = 4,
        Tempo <= 54,
        Tempo > 48,
        weight(3/8) <= 3.
```


Test Data

- Tested with dance CDs (genre and/or tempo specified)
- Small set (161 tracks with style specified, 96 with tempo)
- 17 styles (several with only 1 or 2 examples)

Results: Ranking of Periodicities

Where did the bar and beat levels appear in the rankings?

Rank:	1	2	3	4	5	6	7	8	9	none	
Method 1:	Bar	13	16	16	9	11	13	13	3	2	0
Clustering	Beat	11	16	18	15	9	12	10	1	1	3
Method 2:	Bar	19	20	25	10	13	1	1	0	0	7
Correlation	Beat	30	25	20	7	4	0	0	0	0	10

The beat and bar level were ranked among the highest 10 periodicities in almost all cases.

Results: Classification Rate

	IOI-Clustering	Correlation
Tempo	53/96	65/96
Meter	142/161	150/161
Style	36/52	52/65

Tzanetakis and Cook (2002) report 61% correct classification for 10 (non-similar) genres, using features representing timbre, rhythm and pitch

Results: Tempo Error Types

	IOI-Clustering	Correlation
Half tempo	4	10
Double tempo	24	16
Wrong meter	14	5
Other	1	0

Confusion Matrix

	PD	SA	TA	SF	QU	RR	RU	SW	CH	BO	WW	FO	JI	MA
PD	5	-	_	_	-	_	_	-	_	_	_	_	_	-
SA	-	3	_	_	_	_	_	-	_	_	_	_	-	1
TA	-	-	6	_	_	_	_	-	1	_	_	_	-	-
SF	-	-	_	4	_	_	_	-	1	_	_	-	1	-
QU	-	3	_	_	6	_	_	-	_	_	_	-	-	-
RR	-	-	_	_	_	_	_	-	_	_	_	-	-	-
RU	-	-	1	_	_	_	4	-	_	_	_	_	-	_
SW	-	-	-	_	_	_	-	6	-	-	_	-	-	-
CH	-	-	_	_	_	_	_	-	_	_	_	-	-	-
BO	-	-	-	_	_	_	-	-	-	-	_	-	-	-
WW	-	-	-	-	_	_	_	-	-	-	2	-	-	-
FO	-	-	-	_	_	_	-	-	-	-	_	-	-	-
IL	-	-	-	_	-	1	_	-	-	2	_	2	16	_
MA	-	-	-	_	_	_	_	-	-	_	_	_	-	-

Current (Future) Work

- Analysis of sequences of events
- Estimation of metrical boundaries
- Encoding and catalaguing temporal patterns
- Similarity and genre estimation based on these patterns
- Machine learning of categories (more data required)

