

ISMIR 2003 Oct. 27th – 30th 2003 Baltimore (USA)

Automatic Labelling of tabla signals

Olivier K. GILLET, Gaël RICHARD

Millintroduction

- Exponential growth of available digital information rightarrow need for Indexing and Retrieval technique
- For musical signals, a transcription would include:
 - Descriptors such as genre, style, instruments of a piece
 - Descriptors such as beat, note, chords, nuances, etc...
 - Many efforts in instrument recognition (Kaminskyj2001, Martin 1999, Marques & al. 1999 Brown 1999, Brown & al.2001, Herrera & al.2000, Eronen2001)
 - Less efforts in percussive instrument recognition (Herrera & al. 2003, Paulus&al.2003, McDonald&al.1997)
 - Most effort on isolated sounds
 - Almost no effort on non-Western instrument recognition

OBJECTIVE :Automatic transcription of real performances of an Indian instrument: the tabla

Introduction

Presentation of the tabla

Transcription of tabla phrases

- Architecture of the system
- Features extraction
- Learning and classification

Experimental results

- Database and evaluation protocols
- Results
- Tablascope: a fully integrated environment
 - Description & applications
 - Demonstration

Conclusion

Presentation of the tabla

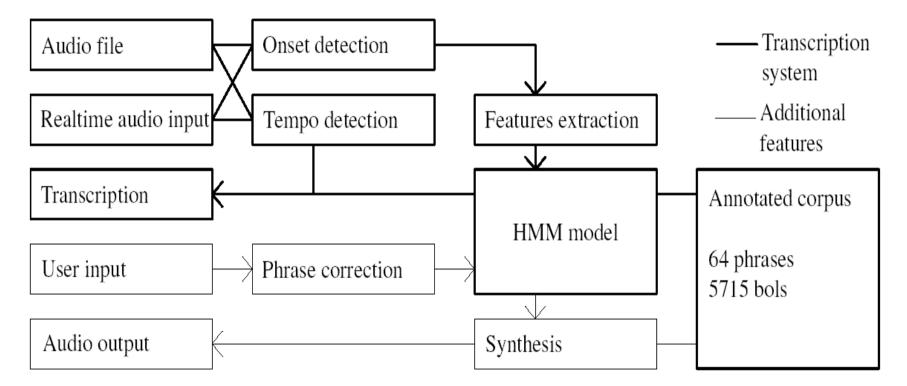
The tabla: an percussive instrument played in Indian classical and semi-classical music

Presentation of the tabla (2)

Musical tradition in India is mostly oral

- Use of mnemonic syllables (or **bol**) for each stroke
- Common bols:
 - Ge, Ke (bayan bols), Na, Tin, Tun, Ti, Te (dayan bols)
 - **Dha** (Na+Ge), **Dhin** (Tin + Ge), **Dhun** (Tun + Ge)
- Some specificities of this notation system
 - Different bols may sound very similar (ex. Ti and Te)
 - Existence of « words » : « TiReKiTe or « GeReNaGe »
 - A mnemonic may change depending on the context
 - Complex rythmic structure based on *Matra* (i.e main beat), Vibhag (i.e measure) and avartan (i.e phrase)

Presentation of tabla (3)


In summary:

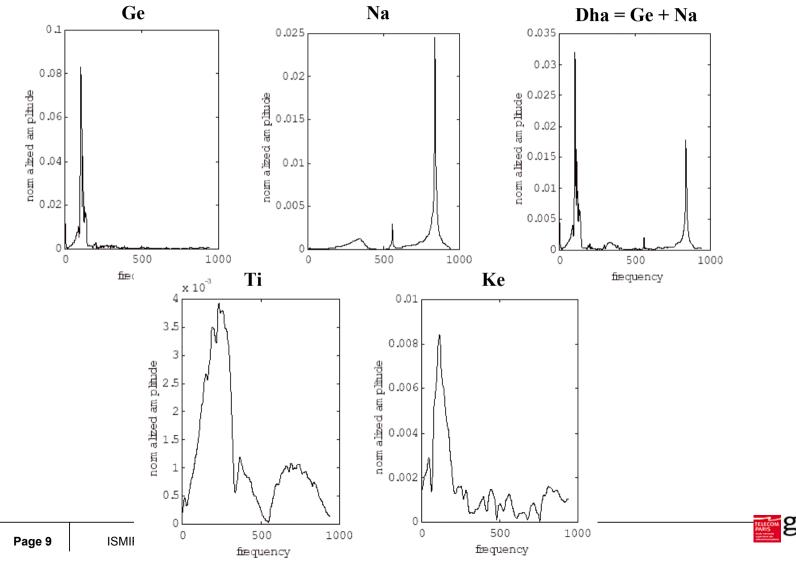
- A tabla phrase is then composed of successive bols of different duration (note, half note, quarter note) embedded in a rythmic structure
- Grouping characteristics (words) : similarity with spoken and written languages: Interest of « Language models » or sequence models
- In this study, the transcription is limited to
 - the recognition of successives bols
 - The relative duration (note, half note, quarter note) of each bol.

Transcription of tabla phrases

Architecture of the system

Parametric representation

Segmentation in strokes


- Extraction of a low frequency envelope (sampled at 220.5 Hz)
- Simple Onset detection based on the difference between two successives samples of the envelope.

Tempo extraction

Estimated as the maximum of the autocorrelation function of the envelope signal in the range {60 – 240 bpm}

Features extraction

Features extraction

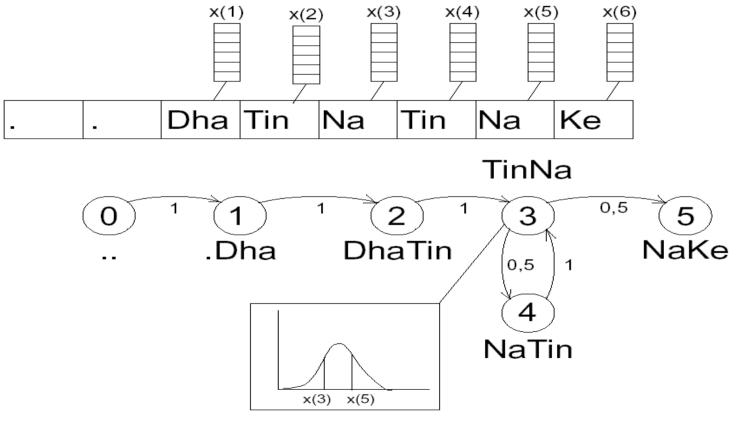
4 frequency bands

- B1 = [0 –150] Hz
- B2 = [150 220] Hz
- B3 = [220 380] Hz
- B4 = [700 900] Hz
- In the case of single mixture, each band is modelled by a Gaussian

Feature vector $F = f_{1..}f_{12}$ (mean, variance and relative weight of each of the 4 Gaussians)

Learning and Classification of bols

4 classification techniques were used.


- K-nearest Neighbors (k-NN)
- Naive Bayes
- Kernel density estimator

HMM sequence modelling

EXAMPLE ARE AND CLASSIFICATION OF BOLS

Context-dependant models (HMM)

EXAMPLE ARE AND CLASSIFICATION OF BOLS

Hidden Markov Models

- States: a couple of Bols B_1B_2 is associated to each state q_t
- **Transitions:** if state *i* is labelled by B_1B_2 and *j* by B_2B_3 then the transition from state $q_t = j$ to state $q_{t-1} = i$ is given by:

$$a_{ij} = p(q_t = j | q_{t-1} = i)$$

= $p(b_t = B_3 | b_{t-1} = B_2, b_{t-2} = B_1)$

- **Emissions probabilities:** Each state i labelled by B_1B_2 emits a feature vector according to a distribution $b_i(x)$ characteristics of the bol B_2 preceded by B_1

$$b_i(x) = p(O_t = x | q_t = i) = p(O_t = x | b_t = B_2, b_{t-1} = B_1)$$

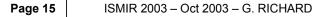
Learning and Classification of bols

Training

- <u>Transition probabilities</u> are estimated by counting occurrences in the training database
- <u>Emission probabilities</u> are estimated with
 - mean and variance estimators on the set of feature vectors in the case of simple Gaussian model
 - 8 iterations of the Expectation-Maximisation (EM) algorithm in the case of a mixture model

Recognition

- Performed using the traditionnal Viterbi algorithm


Experimental results

Database

- 64 phrases with a total of 5715 bols
- A mix of long compositions with themes / variations (kaïda), shorter pieces (kudra) and basic taals.

3 specific sets corresponding to three different tablas:

	Tabla quality	Dayan tuning	Recording quality
Tabla #1	Low (cheap)	in C#3	Studio equipment
Tabla #2	High	In D3	Studio equiment
Tabla #3	High	In D3	Noisier environment

Evaluation protocols

Protocol #1:

- Cross-validation procedure
 - Database split in10 subsets (randomly selected)
 - 9 subsets for training, 1 subset for testing
 - Iteration by rotating the 10 subsets
 - Results are average of the 10 runs

Protocol #2:

- Training database consists in 100% of 2 sets
- Test is 100% of the remining sets

Different instruments and/or conditions are used for training and testing

Experimental results (protocol #1)

Database	All	Tabla #1	Tabla #2	Tabla #3
# of <i>bols</i>	5715	1678	2216	1821
Classification us	ing only f	eatures of s	stroke n	
Kernel density estimator	81.7%	81.8%	82.4%	85.2%
5-NN	83.0%	81.7%	83.3%	85.6%
Naive Bayes	76.6%	79.4%	78.6%	78.5%
Classification using	features o	f stroke n,	n - 1, n - 2	2
Kernel density estimator	86.8%	86.0%	88.7%	92.0%
5-NN	88.9%	87.2%	88.4%	90.6%
Naive Bayes	81.8%	86.5%	83.8%	85.8%
Classification	using lan	guage mod	elling	
HMM, 3-grams, 1 mixture	88.0%	90.6%	89.9%	92.6%
HMM, 4-grams, 2 mixtures	93.6%	92.0%	91.9%	93.4%

Experimental results (protocol #2)

Training set	Tabla #1 & Tabla #2	Tabla #2 & Tabla #3
Test set	Tabla #3 (noisy rec.)	Tabla #1 (cheap quality)
5-NN	79.8 %	78.2 %
HMM, 3-grams, 1 mixture	90.2 %	88.4 %
HMM, 4-grams, 2 mixtures	84.5 %	85.0 %

- HMM approaches are more robust to variability
- Simpler classifiers fail to generalise and to adapt to different recording conditions or instruments

Experimental results

Confusion matrix by bol category

(HMM 4-grams, 2 mixture classifier)

a	b	С	d	e	;- classified as
1241	22	2	7	8	a: resonant <i>dayan</i> strokes (Tin, Na, Tun)
20	1076	2	1	5	b: <i>bayan+dayan</i> strokes (Dhin, Dha)
1	3	766	5	20	c: resonant <i>bayan</i> strokes (Ge, Gi)
8	2	2	448	61	d: non-resonant <i>bayan</i> strokes (Ke, Ki)
11	7	6	50	1938	e: non-resonant dayan strokes (Te, Ti, Tek)

Tablascope: a fully integrated environment

Applications:

- -Tabla transcription
- –Tabla sequence synthesis
- -Tabla-controlled synthesizer

Tablascope ablascope ?												-16
BolPad						ы ^к	o" 🗵	Phrases browse	r.		a" Q	1
🧷 Reload		${\mathcal J}$ Save		🔍 Check		🔦 Accept corr	ecti	Audio Edito			🗍 Remove	
ena TiTe DhaGe Na ena TiTe DhaGe Na ena TiTe DhaGe Na iDha GeNa TunNa G ana TiTe NaKa Nañ ana TiTe NaKa NaD	aDha aDha BeNa Ia						•	ei ex ke ke	Audio source ptal-10tway dhatway 10.way hewa way hewa 2.way hewa 2.way	412 n 485 n 625 n 535 n 453 n 426 n 571 n	ns ns ns ns	
*									la02.wav ital02.wav	480 m		-
Ge Na	Ti	Te	Dha	Ge	Na	Dha	188		ital03.wav	698 n		
Ge Na	Ti	Te	Dha	Ge	Na	Dha		bu	kra07.wav	630 n	ns	
Ge Na	Ti	Te	Dha	Ge	Na	Dha		3-grams	👻 😥 Train m	odel	Cross validatio	on
Ti Dha	Ge	Na	Tun	Na	Ge	Na						-
tukra02.wav			ha		500 014	h		28/04/2003 10:43:55 > 28/04/2003 10:43:55 > 28/04/2003 10:43:55 > 28/04/2003 10:43:55 > 28/04/2003 10:43:55 > 28/04/2003 10:43:55 > 28/04/2003 10:43:55 >	Loading wav file, Loading wav file Loading wav file Loading detabase Ready			
Anythm analysis B	н	©	200	ь. 0	4	3 F	0	28/04/2003 10:44:44 > 28/04/2003 10:45:34 > 28/04/2003 10:45:34 > 28/04/2003 10:45:34 >		n n		3
R: C	Π	Re Ki Te	Tun	T	Re Ki				ha Ge Na			
								-				

- A system for automatic labelling of tabla signals was presented
- Low error rate for transcription (6.5%)
- Several applications were integrated in a friendly environment called Tablascope.
- This work can be generalised to other types of percussive instruments
- Instill need a larger database to confirm the results.....

