Automatic Mood **Detection from** Acoustic Music Data Dan Liu, Lie Lu, Hong-Jiang Zhang Contact: dliu@Cogsci.ucsd.edu

Outline

- Introduction
- Feature Extraction
- Mood Detection
- Mood Tracking
- Experiment
- Conclusion

- Music Mood
 - A semantic metadata to archive music from database
 - Objective or Subjective
 - Depend on many factors such as culture, education, experience...
 - $\boldsymbol{\cdot}$ Consistent within a given cultural context

- Relevant works
 - Concentrate on MIDI or symbolic representations
 - Use various mood descriptors

- Music Mood Taxonomy
 - Hevner's adjective checklist (1935)
 - Descriptors are ambiguity
 - Difficult for computational modeling

Figure 1: Hevner's adjective checklist

- Music Mood Taxonomy
 - Thayer's two-dimensional model (1990)
 - Descriptors are explicit and discriminatable
 - Easier for computational modeling

- Relevant Music Features
 - Intensity Features
 - Timbre Features
 - Rhythm Features
 - Mode Features (not available)

- Timbre Features
 - Spectral Shape Features
 - (centroid, bandwidth, roll off, spectral flux)
 - Spectral Contrast Features
 - Sub-band Peak
 - Sub-band Valley
 - Sub-band Average

- Intensity Features
 - Sub-band Intensity: root mean-square (RMS) in each sub-band
 - Total Intensity: sum of sub-band Intensity

Rhythm Features

Figure 3: Rhythm features extraction

- Rhythm Features
 - Average Strength: average strength of bass instrumental onsets.
 - Average Correlation Peak: average of the maximum three peaks in the auto-correlation curve.
 - Average Tempo: the common divisor of the peaks of the auto-correlation curve.

3. Mood Detection

Hierarchical Framework

Figure 4: The hierarchical mood detection framework

3. Mood Detection

Hierarchical Process

Figure 5: The hierarchical Mood detection process

3. Mood Detection

Step1. Group Classification

 $\frac{P(G_1 \mid I)}{P(G_2 \mid I)} \begin{cases} \geq 1, & Select & G_1 \\ < 1, & Select & G_2 \end{cases}$

Step 2. Mood classification in each group

 $P(M_{j}|G_{1},T,R) = \lambda_{1} \times P(M_{j}|T) + (1 - \lambda_{1}) \times P(M_{j}|R) \quad j = 1,2$ $P(M_{j}|G_{2},T,R) = \lambda_{2} \times P(M_{j}|T) + (1 - \lambda_{2}) \times P(M_{j}|R) \quad j = 3,4$

4. Mood Tracking

- Why we need to track the mood
 Mood is changeable in music
- How to track the changeable mood
 - Segmentation based on music features (timbre and intensity)
 - Mood detection in each segment

4. Mood Tracking

- Segmentation Procedure
 - Compute the distance between two contiguous windows based on timbre and intensity features

$$D = \frac{1}{2} tr \left[(C_{i} - C_{j}) (C_{j}^{-1} - C_{i}^{-1}) \right]$$

2) Compute confidence of being a boundary

$$Conf_{I} = \frac{1}{A_{I}} \exp(\frac{D_{I} - \mu_{I}}{\sigma_{I}}), \quad Conf_{T} = \frac{1}{A_{T}} \exp(\frac{D_{T} - \mu_{T}}{\sigma_{T}})$$
$$Conf_{I} = \alpha \times Conf_{I} + (1 - \alpha) \times Conf_{T}$$

4. Mood Tracking

Segmentation Procedure
3) Detect potential boundaries

$$I. \quad Conf \ (i, i + 1) > Conf \ (i + 1, i + 2)$$

$$II. \quad Conf \ (i, i + 1) > Conf \ (i - 1, i)$$

III.
$$Conf(i, i + 1) > Th_i$$

$$Th_{i} = \alpha \times \frac{1}{2 \times N} \sum_{n=-N}^{N} Conf(i-n-1,i-n)$$

4) Refine potential boundaries

- Mood Detection on Music Clips
 - Database
 - 250 pieces of music, mainly in the classical period and romantic period
 - 200 representative music clips of 20 seconds long for each of the four mood clusters
 - Experiment
 - Cross-validation evaluation with 25% used for testing and 75% for training.
 - Iterated with different random partitions and the results are averaged

- Experiment results on hierarchical framework

(1) Optimal average accuracy achieved when

λ_1 (weighting	of	Timbre	in	Group	1) = 0.8
λ_2 (weighting	of	Timbre	in	Group	1) = 0.4

Timbre features are more important to classify Contentment and Depression in Group 1, and rhythm features are more important to discriminate Exuberance and Anxious in Group 2.

- Experiment result on hierarchical framework

(2)Only 1.6% music in Group 1 (Contentment and Depression) is classified into Group 2 (Exuberance and Anxious), while only 0.4% music in Group 2 is classified into Group 1

This result confirms the good performance of intensity features in discriminating the two groups of mood clusters.

- Comparison of hierarchical framework and non-hierarchical framework (<u>See Results</u>)
 - Overall classification accuracy for hierarchical framework is up to 86.3%, about 5.7% better than the non-hierarchical framework, and its standard deviation decreases from 10.7% to 5.2%.
 - Classification accuracies for all of the four clusters are improved by using hierarchical framework, especially for Exuberance (85.5% improved from 64.7%).

Hierarchical framework has a better performance than its non-hierarchical counterpart, by using the most efficient features for different mood clusters.

- Mood Tracking
 - Haydn's "Serenade" : <u>constantly Contentment</u>
 - Second movement of Beethoven's "Symphony No. 3": <u>mainly Depression</u>
 - Tchaikovsky's "1812 Overture": <u>changeable</u>

Mood tracking performance based on segmentation is better than that of detecting mood every 20 seconds.

6. Conclusion

- Thayer's model of mood is adopted for mood taxonomy
- Intensity, timbre and rhythm feature sets are extracted directly from acoustic data.
- A hierarchical framework is developed to detect the mood in a music clip.
- A segmentation scheme is presented to track the mood in a whole piece of music.

Thank You !

A P

	Contentment	Depression	Exuberance	Anxious
Contentment	76.6 ± 7.6	21.8±7.2	0.5 ± 0.8	1.2 ± 1.2
Depression	4.0 ± 3.5	94.5±3.4	0 ± 0	1.5 ± 2.5
Exuberance	0 ± 0	0.8 ± 1.3	85.5±3.2	13.7 ± 4.8
Anxious	0 ± 0	0±0	11.5 ± 6.7	88.5±6.7

Table 2: Mood detection confusion matrix based on non-hierarchical framework

	Contentment	Depression	Exuberance	Anxious
Contentment	75.0±11.8	25.0 ± 11.8	0 ± 0	0 ± 0
Depression	5.8±2.6	94.2±2.6	0 ± 0	0 ± 0
Exuberance	1.5 ± 2.6	0.7 ± 1.3	64.7±20.5	33.0 ± 18.3
Anxious	0 ± 0	0 ± 0	11.5 ± 6.7	88.3±7.9

Figure 6: Mood tracking results on a part of "1812 Overture" (from 361s - 661s)

