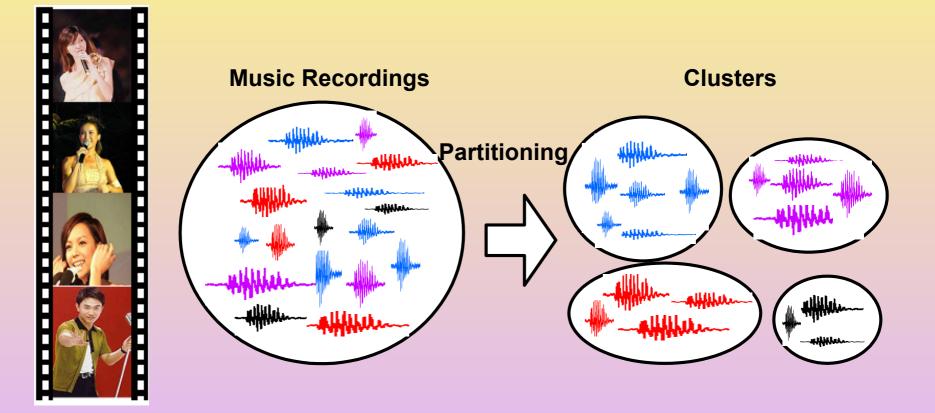
Blind Clustering of Popular Music Recordings Based on Singer Voice Characteristics

Wei-Ho Tsai

Institute of Information Science, Academia Sinica, Taiwan

The Task

To cluster music recordings by singer



Applications

Music data indexing

 Organizing unlabeled or insufficiently well labeled music collections such as live concert recordings and bootlegs.

Karaoke services

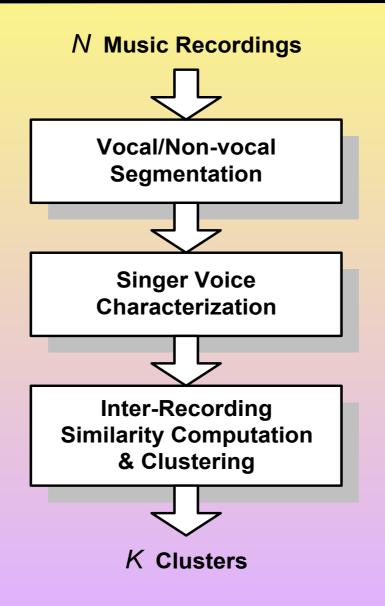
- Efficiently organizing the customers' recordings.
- Personalization

Music recommendation systems

- Suggesting music by singers with similar voices.

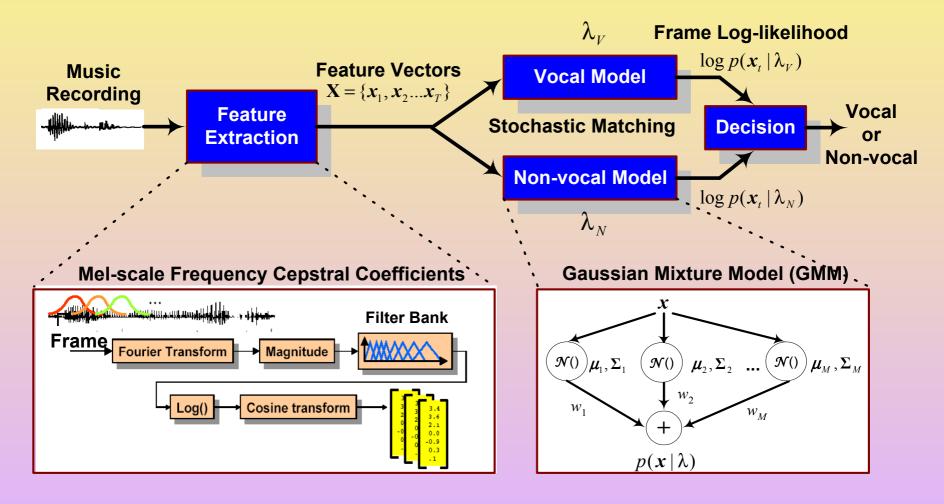
- Singer's voices tend to be arbitrarily altered from time to time
- The vast majority of popular music contains background accompaniment during most or all vocal passages

Method Overview

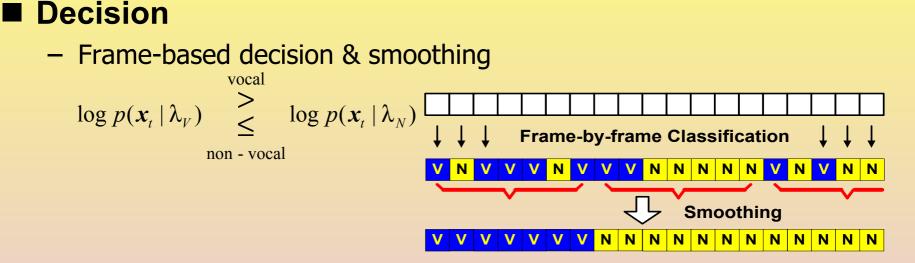


Vocal/Non-vocal Segmentation (I)

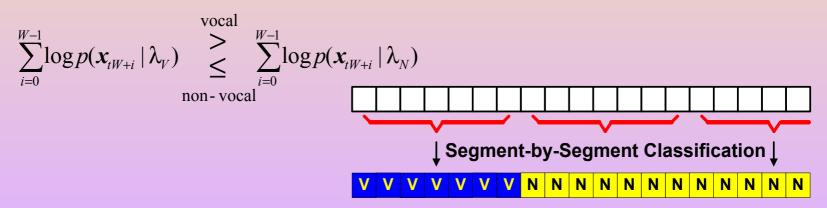
Block diagram



Vocal/Non-vocal Segmentation (II)

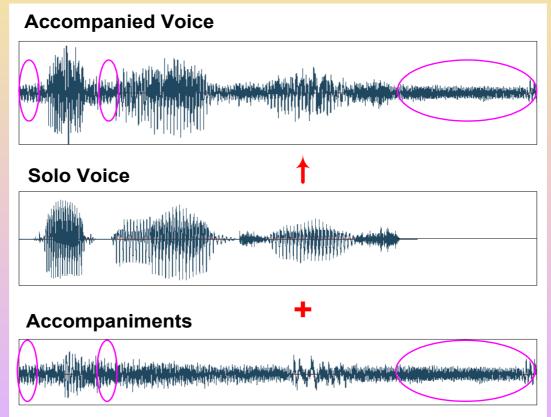


- Fixed-length-segment-based decision

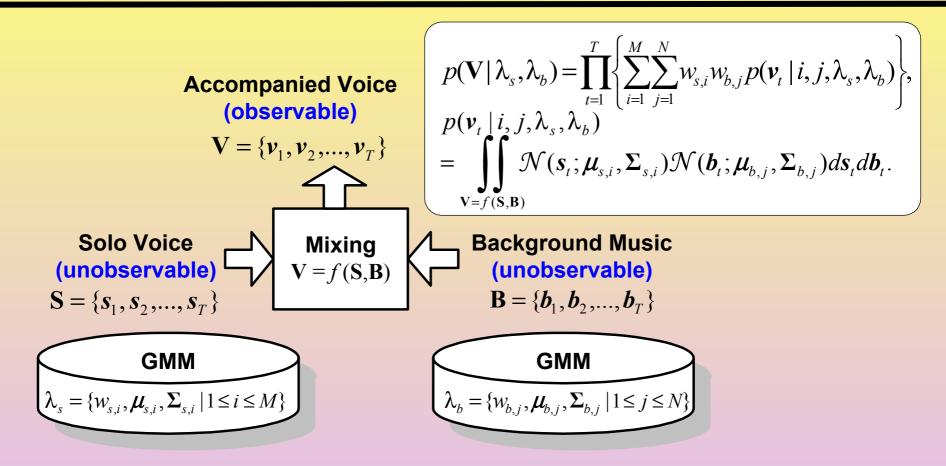


Cues For Singer Voice Characterization

- Substantial similarities exist between the instrumental regions and the accompaniment of the vocal signal
- Solo voice can be modeled via suppressing the background music estimated from the instrumental regions

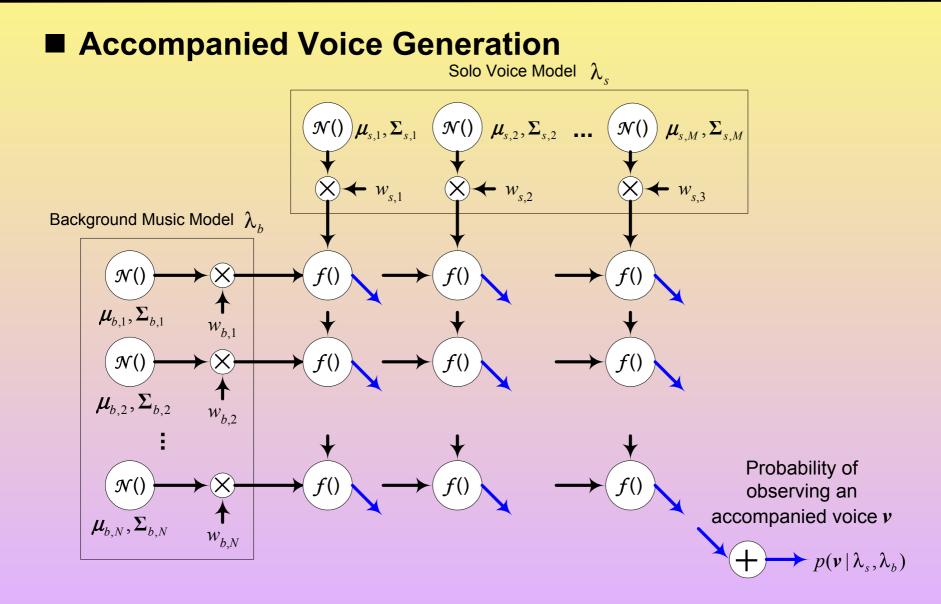


Solo Voice Modeling (I)



- λ_b can be approximately estimated using the instrumental regions - Our aim is to find an optimal solo voice model λ_s such that $\lambda_s^* = \underset{\lambda_s}{\operatorname{arg\,max}} p(\mathbf{V} | \lambda_s, \lambda_b).$

Solo Voice Modeling (II)



Parameter estimation via Expectation-Maximization

- Defining an auxiliary function

$$Q(\lambda_s, \hat{\lambda}_s) = \sum_{t=1}^T \sum_{i=1}^I \sum_{j=1}^J p(i, j | \mathbf{v}_t, \lambda_s, \lambda_b) \log p(i, j, \mathbf{v}_t | \hat{\lambda}_s, \lambda_b),$$

where $p(i, j, \mathbf{v}_t | \hat{\lambda}_s, \lambda_b) = w_{s,i} w_{b,j} p(\mathbf{v}_t | i, j, \hat{\lambda}_s, \lambda_b),$

$$p(i, j | \mathbf{v}_t, \lambda_s, \lambda_b) = \frac{w_{s,i} w_{b,j} p(\mathbf{v}_t | i, j, \lambda_s, \lambda_b)}{\sum_{m=1}^{I} \sum_{n=1}^{J} w_{s,m} w_{b,n} p(\mathbf{v}_t | m, n, \lambda_s, \lambda_b)}$$

- Letting $\nabla Q(\lambda_s, \hat{\lambda}_s) = 0$ for each parameter to be re-estimated, we have $\hat{w}_{s,i} = \frac{1}{T} \sum_{t=1}^{T} \sum_{j=1}^{J} p(i, j | \mathbf{v}_t, \lambda_s, \lambda_b),$

$$\hat{\boldsymbol{\mu}}_{s,i} = \frac{\sum_{t=1}^{T} \sum_{j=1}^{N} p(i, j \mid \boldsymbol{v}_t, \boldsymbol{\lambda}_s, \boldsymbol{\lambda}_b) \cdot E\{\boldsymbol{s}_t \mid \boldsymbol{v}_t, i, j, \boldsymbol{\lambda}_s, \boldsymbol{\lambda}_b\}}{\sum_{t=1}^{T} \sum_{j=1}^{N} p(i, j \mid \boldsymbol{v}_t, \boldsymbol{\lambda}_s, \boldsymbol{\lambda}_b)},$$

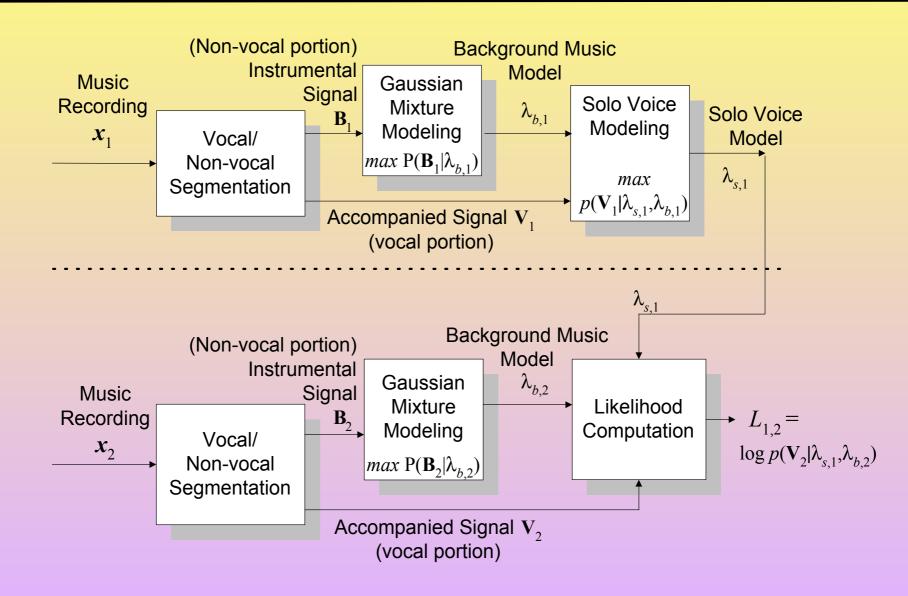
$$\hat{\boldsymbol{\Sigma}}_{s,i} = \frac{\sum_{t=1}^{T} \sum_{j=1}^{J} p(i, j \mid \boldsymbol{v}_{t}, \lambda_{s}, \lambda_{b}) \cdot E\{\boldsymbol{s}_{t} \boldsymbol{s}_{t}' \mid \boldsymbol{v}_{t}, i, j, \lambda_{s}, \lambda_{b}\}}{\sum_{t=1}^{T} \sum_{j=1}^{J} p(i, j \mid \boldsymbol{v}_{t}, \lambda_{s}, \lambda_{b})} - \boldsymbol{\mu}_{s,i} \boldsymbol{\mu}_{s,i}',$$

Solo Voice Modeling (IV)

Re-estimation formulas for cepstral features

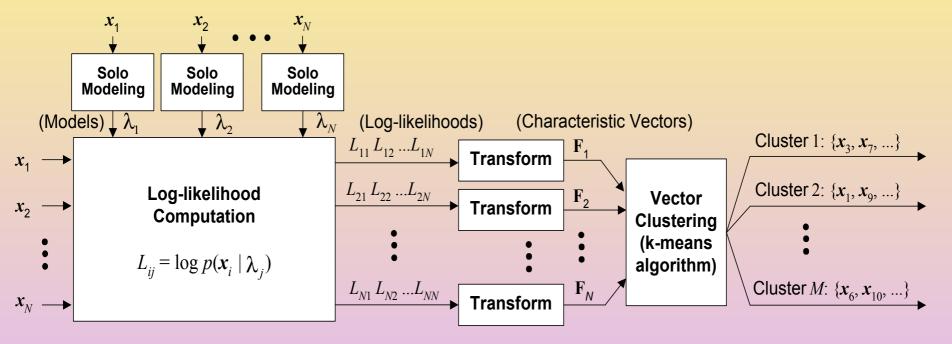
- Suppose V is a cepstral feature, and S and B are additive in the time domain, then $v_t = \log[\exp(s_t) + \exp(b_t)]$. We approximate $v_t \approx \max(s_t, b_t)$.
- It can be shown that $p(v_t | i, j, \lambda_s, \lambda_b) = \mathcal{N}(v_t; \mu_{s,i}, \sigma_{s,i}^2) \Phi(\frac{v_t - \mu_{b,j}}{\sigma_{b,i}}) + \mathcal{N}(v_t; \mu_{b,j}, \sigma_{b,j}^2) \Phi(\frac{v_t - \mu_{s,i}}{\sigma_{s,i}}), \quad \Phi(\tau) = \int_{-\infty}^{\tau} \frac{1}{\sqrt{2\pi}} e^{-w^2/2} dw.$ $E\{s_t \mid v_t, i, j, \lambda_s, \lambda_b\} = p(s_t = v_t \mid i, j, \lambda_s, \lambda_b) \cdot v_t + (1 - p(s_t = v_t \mid i, j, \lambda_s, \lambda_b)) \cdot E\{s_t \mid s_t < v_t, i, j, \lambda_s, \lambda_b\},$ $E\left\{s_{t}^{2} \mid v_{t}, i, j, \lambda_{s}, \lambda_{b}\right\} = p(s_{t} = v_{t} \mid i, j, \lambda_{s}, \lambda_{b}) \cdot v_{t}^{2} + \left(1 - p(s_{t} = v_{t} \mid i, j, \lambda_{s}, \lambda_{b})\right) \cdot E\left\{s_{t}^{2} \mid s_{t} < v_{t}, i, j, \lambda_{s}, \lambda_{b}\right\}$ $\mathcal{N}(v_t; \boldsymbol{\mu}_{s,i}, \boldsymbol{\sigma}_{s,i}^2) \Phi(\frac{v_t - \boldsymbol{\mu}_{b,j}}{\boldsymbol{\sigma}_{b,j}}) = \frac{\mathcal{N}(v_t; \boldsymbol{\mu}_{s,i}, \boldsymbol{\sigma}_{s,i}^2) \Phi(\frac{v_t - \boldsymbol{\mu}_{b,j}}{\boldsymbol{\sigma}_{b,j}})}{\mathcal{N}(v_t; \boldsymbol{\mu}_{s,i}, \boldsymbol{\sigma}_{s,i}^2) \Phi(\frac{v_t - \boldsymbol{\mu}_{b,j}}{\boldsymbol{\sigma}_{b,j}}) + \mathcal{N}(v_t; \boldsymbol{\mu}_{b,j}, \boldsymbol{\sigma}_{b,j}^2) \Phi(\frac{v_t - \boldsymbol{\mu}_{s,i}}{\boldsymbol{\sigma}_{s,i}})},$ $E\{s_{t} | s_{t} < v_{t}, i, j, \lambda_{s}, \lambda_{b}\} = \mu_{s,i} - \sigma_{s,i} \frac{\mathcal{N}(v_{t}; \mu_{s,i}, \sigma_{s,i}^{2})}{\Phi(\frac{v_{t} - \mu_{s,i}}{\sigma_{s,i}})}.$ $E\{s_{t}^{2} | s_{t} < v_{t}, i, j, \lambda_{s}, \lambda_{b}\} = \mu_{s,i}^{2} + \sigma_{s,i}^{2} - (\mu_{s,i} + v_{t})\sigma_{s,i} \frac{\mathcal{N}(v_{t}; \mu_{s,i}, \sigma_{s,i}^{2})}{\Phi(\frac{v_{t} - \mu_{s,i}}{\sigma_{s,i}})}.$

Inter-recording Likelihood Computation

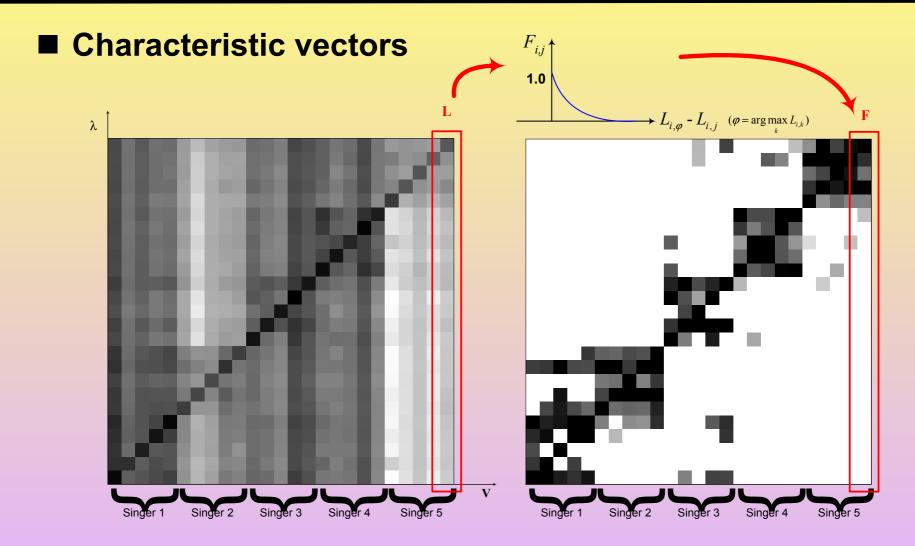


Singer-based Clustering (I)

(Feature Vectors of Music Recordings)



Singer-based Clustering (II)



- Converting into a problem of conventional vector clustering.

Determining The Number Of Clusters

Bayesian Information Criterion (BIC)

- Choosing one among a set of candidate models $\{\Lambda_1, \Lambda_2, ..., \Lambda_K\}$ can best represent a given data set \mathcal{D}

BIC(Λ_i) = log $p(\mathcal{D} | \Lambda_i) - \frac{1}{2} \gamma d_i \log |\mathcal{D}|$, $|\mathcal{D}|$: size of the data set \mathcal{D} γ : a penalty factor

 d_i : no. of free parameters in model Λ_i $|\mathcal{D}|$: size of the data set \mathcal{D} γ : a penalty factor

Viewing a K-clustering as a candidate model



An appropriate number of clusters can be determined by $K^* = \underset{1 \le K \le M}{\operatorname{BIC}(K)}$.

Experimental Results (I)

Music data

- 416 tracks from Mandarin pop music CDs
- Sub-set DB-1: 200 tracks
 - 10 male & 10 female singers; 10 different songs/singer
 - Used for the performance evaluation of the singer-based clustering
- Sub-set DB-2: 216 tracks
 - 8 male & 13 female singers; none of the singers appeared in DB-1
 - Used for the training of the vocal and non-vocal models

Vocal/non-vocal segmentation results

Assessment method

Frame accuracy (in%) = $\frac{\text{#correctly - classified frames}}{\text{#total frames}} \times 100\%$

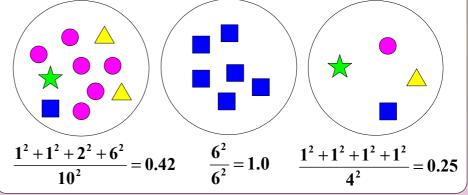
 The performance achieved with the frame-based decision and the segment-based decision were, respectively, 76.8% and 77.6% frame accuracy

Clustering assessment method

– Cluster purity

$$\rho_k = \sum_{p=1}^p \frac{n_{kp}^2}{n_k^2},$$

ρ_k is the purity of the cluster *k*, *n_k* the total no. of recordings in the cluster *k*, and *n_{kp}* the no. of recordings in the cluster *k* that were performed by singer *p*



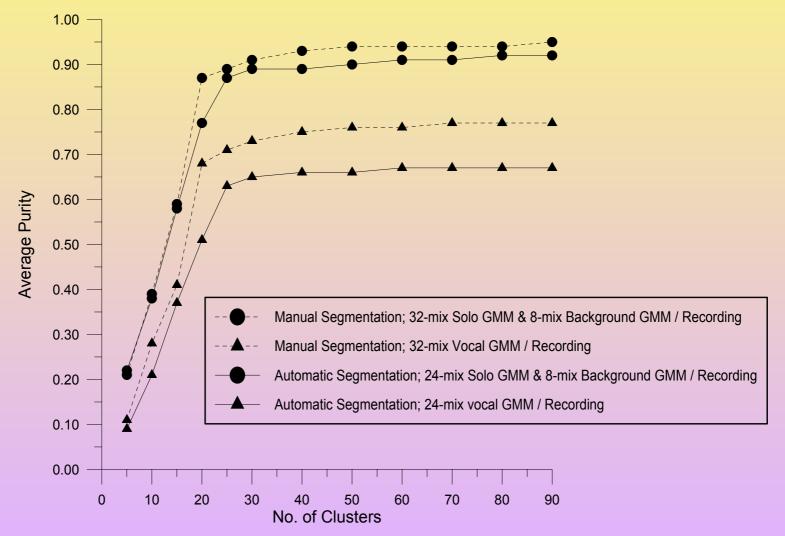
– Average purity

$$\overline{\rho} = \frac{1}{M} \sum_{k=1}^{K} n_k \rho_k,$$

• *M* is the total no. of recordings, and *K* the no. of clusters

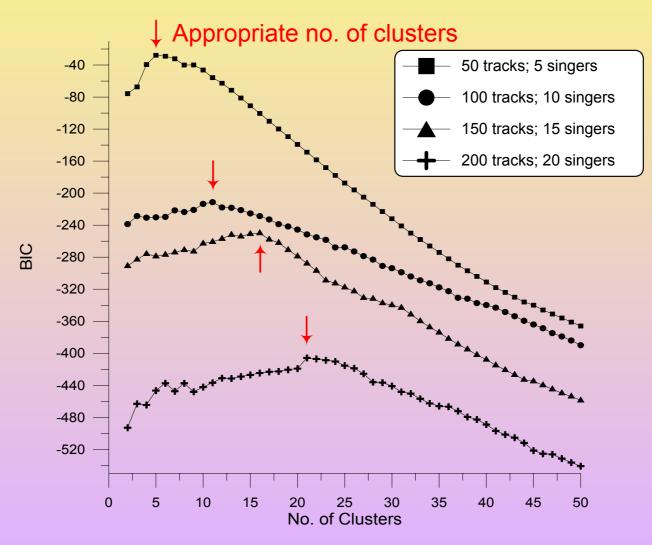
Experimental Results (III)

Result of the clustering for 200 tracks (20 singers × 10 songs)



Experimental Results (IV)

Results of automatically determining the no. of clusters



Summary

We have

- Separated vocal from non-vocal segments of music;
- Isolated singers' vocal characteristics form the background music;
- Clustered music recordings by singer.

We will

 Handle a wider variety of music data including duets, trios, chorus, background vocals, or music with multiple simultaneous or nonsimultaneous singers.