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The Task

To cluster music recordings by singer

Partitioning

Music Recordings Clusters
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Applications

Music data indexing
– Organizing unlabeled or insufficiently well labeled music collections 

such as live concert recordings and bootlegs.

Karaoke services
– Efficiently organizing the customers’ recordings.
– Personalization

Music recommendation systems
– Suggesting music by singers with similar voices.
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Major Challenges

Singer’s voices tend to be arbitrarily altered from time 
to time

The vast majority of popular music contains 
background accompaniment during most or all vocal 
passages
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Method Overview
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Vocal/Non-vocal Segmentation (I)

Block diagram
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Vocal/Non-vocal Segmentation (II)

Decision
– Frame-based decision & smoothing

– Fixed-length-segment-based decision
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Cues For Singer Voice Characterization

Substantial similarities exist between the instrumental 
regions and the accompaniment of the vocal signal
Solo voice can be modeled via suppressing the background 
music estimated from the instrumental regions

Solo Voice

Accompaniments

Accompanied Voice

+
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Solo Voice Modeling (I)

– λb can be approximately estimated using the instrumental regions
– Our aim is to find an optimal solo voice model λs such that
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Solo Voice Modeling (II)

Accompanied Voice Generation
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Solo Voice Modeling (III)

Parameter estimation via Expectation-Maximization
– Defining an auxiliary function

where         

– Letting                       for each parameter to be re-estimated, we 
have
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Solo Voice Modeling (IV)

Re-estimation formulas for cepstral features
– Suppose V is a cepstral feature, and S and B are additive in the time 

domain, then vt = log[exp(st)+exp(bt)]. We approximate vt ≈ max (st , bt ).
– It can be shown that
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Inter-recording Likelihood Computation
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Singer-based Clustering (I)
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Singer-based Clustering (II)

Characteristic vectors

– Converting into a problem of conventional vector clustering.
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Determining The Number Of Clusters

Bayesian Information Criterion (BIC)
– Choosing one among a set of candidate models {Λ1, Λ2 …, ΛK} can 

best represent a given data set D

Viewing a K-clustering as a candidate model

An appropriate number of clusters can be determined 
by
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Experimental Results (I)

Music data
– 416 tracks from Mandarin pop music CDs
– Sub-set DB-1: 200 tracks 

• 10 male & 10 female singers; 10 different songs/singer
• Used for the performance evaluation of the singer-based clustering

– Sub-set DB-2: 216 tracks 
• 8 male & 13 female singers; none of the singers appeared in DB-1
• Used for the training of the vocal and non-vocal models

Vocal/non-vocal segmentation results
– Assessment method

– The performance achieved with the frame-based decision and the 
segment-based decision were, respectively, 76.8% and 77.6% 
frame accuracy

%100
frames total#

frames classified-correctly# (in%)accuracy  Frame ×=
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Experimental Results (II)

Clustering assessment method
– Cluster purity

• ρk is the purity of the cluster k, nk the total no. of recordings in the 
cluster k, and nkp the no. of recordings in the cluster k that were 
performed by singer p

– Average purity

• M is the total no. of recordings, and K the no. of clusters
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Experimental Results (III)

Result of the clustering for 200 tracks (20 singers × 10 songs)
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Experimental Results (IV)

Results of automatically determining the no. of clusters
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Summary

We have
– Separated vocal from non-vocal segments of music;
– Isolated singers’ vocal characteristics form the background music;
– Clustered music recordings by singer.

We will
– Handle a wider variety of music data including duets, trios, chorus, 

background vocals, or music with multiple simultaneous or non-
simultaneous singers.
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