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The Task

B To cluster music recordings by singer

Music Recordings Clusters
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Applications

B Music data indexing

— Organizing unlabeled or insufficiently well labeled music collections
such as live concert recordings and bootlegs.

B Karaoke services
— Efficiently organizing the customers’ recordings.
— Personalization

B Music recommendation systems
— Suggesting music by singers with similar voices.



Major Challenges

B Singer’s voices tend to be arbitrarily altered from time
to time

B The vast majority of popular music contains
background accompaniment during most or all vocal
passages



Method Overview

N Music Recordings
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Vocal/Non-vocal Segmentation (l)

B Block diagram
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Vocal/Non-vocal Segmentation (ll)

B Decision
— Frame-based decision & smoothing
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Cues For Singer Voice Characterization

B Substantial similarities exist between the instrumental
regions and the accompaniment of the vocal signal

B Solo voice can be modeled via suppressing the background
music estimated from the instrumental regions
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Solo Voice Modeling (1)
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— A, can be approximately estimated using the instrumental regions
— Our aim is to find an optimal solo voice model A, such that
A =argmax p(V |\ _,A,).
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Solo Voice Modeling ()

B Accompanied Voice Generation
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Solo Voice Modeling ()

B Parameter estimation via Expectation-Maximization
— Defining an auxiliary function
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Solo Voice Modeling (1v)

B Re-estimation formulas for cepstral features

— Suppose V is a cepstral feature, and S and B are additive in the time
domain, then v, = log[exp(s ) +exp(b,)]. We approximate v, = max (s, , b, ).

— It can be shown that .
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Inter-recording Likelihood Computation

(Non-vocal portion)
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Singer-based Clustering ()

(Feature Vectors of Music Recordings)
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Singer-based Clustering ()

B Characteristic vectors

Sinder 1 Sinder 2 Sinder 3 Sing®er 4 Sinder 5 Sinder 1 Sinder 2 Singer 3 Singer 4 Sinder 5

— Converting into a problem of conventional vector clustering.



16

Determining The Number Of Clusters

B Bayesian Information Criterion (BIC)

— Choosing one among a set of candidate models {A,, N\, ..., A} can
best represent a given data set © [dl.: no. of free parameters in model /\i}

_ 1 |D |: size of the data set ©
BIC(A,) =log p(D|N,) By yd;log|D|, V: a penalty factor

B Viewing a K-clustering as a candidate model
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BIC increases or not?

K_

B An appropriate number of clusters can be determined
by K =argmax BIC(K).
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Experimental Results (i)

B Music data
— 416 tracks from Mandarin pop music CDs
— Sub-set DB-1: 200 tracks

e 10 male & 10 female singers; 10 different songs/singer
e Used for the performance evaluation of the singer-based clustering

— Sub-set DB-2: 216 tracks

e 8 male & 13 female singers; none of the singers appeared in DB-1
e Used for the training of the vocal and non-vocal models

B Vocal/non-vocal segmentation results
— Assessment method

# correctly - classified frames % 100%

Frame accuracy (in%) =
# total frames

— The performance achieved with the frame-based decision and the
segment-based decision were, respectively, 76.8% and 77.6%
frame accuracy



Experimental Results (1)

B Clustering assessment method

— Cluster purity P op?
— P
IOk — 7

p=1 My

 p, is the purity of the cluster %, n, the total no. of recordings in the
cluster k, and n,,, the no. of recordings in the cluster k that were
performed by singerp [ h
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« M s the total no. of recordings, and K the no. of clusters
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Experimental Results (i)

B Result of the clustering for 200 tracks (20 singers x 10 songs)
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Experimental Results (1v)
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B Results of automatically determining the no. of clusters

BIC

| Appropriate no. of clusters
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Summary

B We have
— Separated vocal from non-vocal segments of music;
— Isolated singers’ vocal characteristics form the background music;
— Clustered music recordings by singer.

B We will

— Handle a wider variety of music data including duets, trios, chorus,
background vocals, or music with multiple simultaneous or non-
simultaneous singers.
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