Shazam Entertainment

just hit 2580 on your mobile

ISMIR 2003 October 29th, 2003

What is Shazam?

What is Shazam?

- Query by mobile phone
- Started in Year 2000
- Headquartered in London
- Launched Service in August of 2002
- 1.8M+ tracks
- Service live in UK, Gemany, Finland
- Coming soon to other countries in Europe and Asia

Shazam Connects you to Music

Everywhere you have your mobile

"THE MOMENT"

Radio - Car, Home, Work

TV and Cinema

Cafes, Shops, Restaurants

Target Audience

Core target:

Music mobile

- 18-25 years old
- Struggle to keep up with LATEST RELEASES
- Enjoy new technologies

Music 'Experts'

Early Youth

- 14-17 years old
- Identify next purchase quickly
- Enjoy practical services

Music Community

More Mature

- 26-40 years old
- Identify classic hits as well as new music
- Need advice on what to buy

Music Confidence

User Experience

Shazam allows people to identify music over the mobile phone, anywhere and anytime.

- ✓ Dial 2580 & let the phone listen to the music.
- ✓ Shazam will terminate the call and send an SMS back with the name of the track & artist – this is called tagging.
- ✓ Access further content Ringtones, Songmail..
- ✓ List of tagged songs available on http://www.shazam.com

Access your "tags"

- Track name, artist and album are currently displayed
- Shazam has more music data than currently used, prioritization will depend on consumer feedback and product roadmap
- Tags can be sorted in various ways
- User can buy CDs from a variety of online stores

And more...

Operating Constraints

Audio Source Constraints

- Imperfect audio source material
 - Physical media defects
 - Digital compression
 - Watermarks
- Imperfect audio equipment
 - Speed variation (turntables and drive mechanisms)
 - Poor speakers
 - Nonlinear phase
- Environmental factors
 - Propagation through air
 - Reverberation
 - Additive noise

Receiver Constraints

- Poor microphone
- Bandlimited sampling (8KHz)
 - 300-3500Hz telephone bandwidth
- AGC, VAD, and Squelch
- Background noise suppression and nonlinear voice enhancement
- Voice Codec
 - EFR, AMR, EVRC, QCP, etc.
- Network dropout, poor coverage, handoff

Search Constraints

- Be insensitive to offset (e.g. not just first or middle 30 seconds)
- Must have high sensitivity in the presence of noise and distortion
- Low probability of false positives
 - Not just "closest match"
 - Slightly challenging with respect to certain kinds of music, such as techno
 - Plagarism

Search Constraints

- Identify exact recording
 - (for many applications: rights mgmt, etc)
- Scale to millions of tracks
 - Statistical scaling (maintain high sensitivity and low false positives)
 - Computational scaling (must be fast to serve hundreds or thousands of requests per second without requiring inordinate CPU power).
 - log speed or better
 - parallelizeable
 - Reasonably small memory footprint

This Problem is Impossible

- A real-world sample:
- Extremely challenging, discouraging
- No known technique could work
- Break news gently to colleagues
- Find new job?
- But actually...

How does it work?

Desired "Fingerprint" and System Properties

- Survives all the obstacles going from source material to recording received at our IVR
- Mostly reproducible, even in presence of noise
- Informative (reasonably high entropy)
- Tolerates shredded or partially missing features
- Tolerates spurious features
- Translation invariant
- Self-framing

Aligned Tagged Landmarks

- For each audio file, generate reproducible landmarks
 - Each landmark occurs at a time offset
- For each landmark, generate a "fingerprint" tag that characterizes its location

Aligned Tagged Landmarks

- Do same for sample
- Generate list of matching fingerprints
- Each correctly matching fingerprint must have same relative time offset

$$time_{db} - time_{sample} = Constant$$

- Incorrectly matching fingerprints have random relative time offset
- Filter out cruft by doing a histogram on time differences!
- Score is size of biggest histogram peak

Non-matching: No alignment

Matching: alignment

Histogram of differences of time offsets: signals match

Spectrogram Peaks

- Extremely robust
 - Against noise
 - Against reverb, room dynamics
 - Against nonlinear distortion
- Reproducible
 - Everything you want
- Tend to survive through voice codec

Spectrogram Peaks

- So, we could let features be the peaks themselves:
 - Extract timefrequency
 coordinates as
 skeletonized
 "constellation map"
 of "landmarks"
 - Frequency value is "fingerprint"
 - "sliding transparency"

Spectrogram Peaks

 However, this is a little slow since individual peaks have low entropy

Combinatorial Hashing

- Fix speed problem by increasing entropy of feature space
- Use combinations
 of a small number
 (2-3) of
 constellation points
- Each point is taken as an "anchor point"
- Each anchor point has a "target zone"

Combinatorial Hashing

- Hash is formed between anchor point and each point in target zone, using frequency values and time delta
- Fan-out causes mini "combinatorial explosion" in number of tokens
- But compensated for by nearly 1e6 increase in speed and specificity.

What can it do?

Recognition rate - Linear PCM

Recognition rate - GSM codec

Sound Examples

Kajagoogoo and Limahl, Never Ending Story

Simultaneous Mix Example

- Wim Mertens, Struggle for pleasure
- E2. Brahms, Concerto for violin and Cello, A minor. Op. 102, allegro
- 4. Ravel, *Bolero* (London Symphony Orchestra)
- §5. Buena Vista Social Club, *Chan Chan*
- 6. Robert Miles, *Freedom*
- ¶7. M-People, One Night in Heaven

Live Example

Other Applications

- Radio monitoring
- Ad tracking
- P2P fileshare monitoring
- Library music identification
- Cueing and alignment
- Audio Google (query by example)
- Etc.

Conclusions

- Non symbolic
- Non-generalizing "exact matches"
- Highly noise resistant
- Highly scalable
- Very fast

A&P